1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2024-12-28 06:31:58 +00:00

feat(ml): composable ml (#9973)

* modularize model classes

* various fixes

* expose port

* change response

* round coordinates

* simplify preload

* update server

* simplify interface

simplify

* update tests

* composable endpoint

* cleanup

fixes

remove unnecessary interface

support text input, cleanup

* ew camelcase

* update server

server fixes

fix typing

* ml fixes

update locustfile

fixes

* cleaner response

* better repo response

* update tests

formatting and typing

rename

* undo compose change

* linting

fix type

actually fix typing

* stricter typing

fix detection-only response

no need for defaultdict

* update spec file

update api

linting

* update e2e

* unnecessary dimension

* remove commented code

* remove duplicate code

* remove unused imports

* add batch dim
This commit is contained in:
Mert 2024-06-06 23:09:47 -04:00 committed by GitHub
parent 7a46f80ddc
commit 2b1b43a7e4
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
39 changed files with 953 additions and 735 deletions

View file

@ -12,8 +12,6 @@ from rich.logging import RichHandler
from uvicorn import Server
from uvicorn.workers import UvicornWorker
from .schemas import ModelType
class PreloadModelData(BaseModel):
clip: str | None
@ -21,7 +19,7 @@ class PreloadModelData(BaseModel):
class Settings(BaseSettings):
cache_folder: str = "/cache"
cache_folder: Path = Path("/cache")
model_ttl: int = 300
model_ttl_poll_s: int = 10
host: str = "0.0.0.0"
@ -55,14 +53,6 @@ def clean_name(model_name: str) -> str:
return model_name.split("/")[-1].translate(_clean_name)
def get_cache_dir(model_name: str, model_type: ModelType) -> Path:
return Path(settings.cache_folder) / model_type.value / clean_name(model_name)
def get_hf_model_name(model_name: str) -> str:
return f"immich-app/{clean_name(model_name)}"
LOG_LEVELS: dict[str, int] = {
"critical": logging.ERROR,
"error": logging.ERROR,

View file

@ -6,22 +6,34 @@ import threading
import time
from concurrent.futures import ThreadPoolExecutor
from contextlib import asynccontextmanager
from functools import partial
from typing import Any, AsyncGenerator, Callable, Iterator
from zipfile import BadZipFile
import orjson
from fastapi import Depends, FastAPI, Form, HTTPException, UploadFile
from fastapi import Depends, FastAPI, File, Form, HTTPException
from fastapi.responses import ORJSONResponse
from onnxruntime.capi.onnxruntime_pybind11_state import InvalidProtobuf, NoSuchFile
from PIL.Image import Image
from pydantic import ValidationError
from starlette.formparsers import MultiPartParser
from app.models import get_model_deps
from app.models.base import InferenceModel
from app.models.transforms import decode_pil
from .config import PreloadModelData, log, settings
from .models.cache import ModelCache
from .schemas import (
InferenceEntries,
InferenceEntry,
InferenceResponse,
MessageResponse,
ModelIdentity,
ModelTask,
ModelType,
PipelineRequest,
T,
TextResponse,
)
@ -63,12 +75,21 @@ async def lifespan(_: FastAPI) -> AsyncGenerator[None, None]:
gc.collect()
async def preload_models(preload_models: PreloadModelData) -> None:
log.info(f"Preloading models: {preload_models}")
if preload_models.clip is not None:
await load(await model_cache.get(preload_models.clip, ModelType.CLIP))
if preload_models.facial_recognition is not None:
await load(await model_cache.get(preload_models.facial_recognition, ModelType.FACIAL_RECOGNITION))
async def preload_models(preload: PreloadModelData) -> None:
log.info(f"Preloading models: {preload}")
if preload.clip is not None:
model = await model_cache.get(preload.clip, ModelType.TEXTUAL, ModelTask.SEARCH)
await load(model)
model = await model_cache.get(preload.clip, ModelType.VISUAL, ModelTask.SEARCH)
await load(model)
if preload.facial_recognition is not None:
model = await model_cache.get(preload.facial_recognition, ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)
await load(model)
model = await model_cache.get(preload.facial_recognition, ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION)
await load(model)
def update_state() -> Iterator[None]:
@ -81,6 +102,27 @@ def update_state() -> Iterator[None]:
active_requests -= 1
def get_entries(entries: str = Form()) -> InferenceEntries:
try:
request: PipelineRequest = orjson.loads(entries)
without_deps: list[InferenceEntry] = []
with_deps: list[InferenceEntry] = []
for task, types in request.items():
for type, entry in types.items():
parsed: InferenceEntry = {
"name": entry["modelName"],
"task": task,
"type": type,
"options": entry.get("options", {}),
}
dep = get_model_deps(parsed["name"], type, task)
(with_deps if dep else without_deps).append(parsed)
return without_deps, with_deps
except (orjson.JSONDecodeError, ValidationError, KeyError, AttributeError) as e:
log.error(f"Invalid request format: {e}")
raise HTTPException(422, "Invalid request format.")
app = FastAPI(lifespan=lifespan)
@ -96,42 +138,63 @@ def ping() -> str:
@app.post("/predict", dependencies=[Depends(update_state)])
async def predict(
model_name: str = Form(alias="modelName"),
model_type: ModelType = Form(alias="modelType"),
options: str = Form(default="{}"),
entries: InferenceEntries = Depends(get_entries),
image: bytes | None = File(default=None),
text: str | None = Form(default=None),
image: UploadFile | None = None,
) -> Any:
if image is not None:
inputs: str | bytes = await image.read()
inputs: Image | str = await run(lambda: decode_pil(image))
elif text is not None:
inputs = text
else:
raise HTTPException(400, "Either image or text must be provided")
try:
kwargs = orjson.loads(options)
except orjson.JSONDecodeError:
raise HTTPException(400, f"Invalid options JSON: {options}")
model = await load(await model_cache.get(model_name, model_type, ttl=settings.model_ttl, **kwargs))
model.configure(**kwargs)
outputs = await run(model.predict, inputs)
return ORJSONResponse(outputs)
response = await run_inference(inputs, entries)
return ORJSONResponse(response)
async def run(func: Callable[..., Any], inputs: Any) -> Any:
async def run_inference(payload: Image | str, entries: InferenceEntries) -> InferenceResponse:
outputs: dict[ModelIdentity, Any] = {}
response: InferenceResponse = {}
async def _run_inference(entry: InferenceEntry) -> None:
model = await model_cache.get(entry["name"], entry["type"], entry["task"], ttl=settings.model_ttl)
inputs = [payload]
for dep in model.depends:
try:
inputs.append(outputs[dep])
except KeyError:
message = f"Task {entry['task']} of type {entry['type']} depends on output of {dep}"
raise HTTPException(400, message)
model = await load(model)
output = await run(model.predict, *inputs, **entry["options"])
outputs[model.identity] = output
response[entry["task"]] = output
without_deps, with_deps = entries
await asyncio.gather(*[_run_inference(entry) for entry in without_deps])
if with_deps:
await asyncio.gather(*[_run_inference(entry) for entry in with_deps])
if isinstance(payload, Image):
response["imageHeight"], response["imageWidth"] = payload.height, payload.width
return response
async def run(func: Callable[..., T], *args: Any, **kwargs: Any) -> T:
if thread_pool is None:
return func(inputs)
return await asyncio.get_running_loop().run_in_executor(thread_pool, func, inputs)
return func(*args, **kwargs)
partial_func = partial(func, *args, **kwargs)
return await asyncio.get_running_loop().run_in_executor(thread_pool, partial_func)
async def load(model: InferenceModel) -> InferenceModel:
if model.loaded:
return model
def _load(model: InferenceModel) -> None:
def _load(model: InferenceModel) -> InferenceModel:
with lock:
model.load()
return model
try:
await run(_load, model)

View file

@ -1,24 +1,40 @@
from typing import Any
from app.schemas import ModelType
from app.models.base import InferenceModel
from app.models.clip.textual import MClipTextualEncoder, OpenClipTextualEncoder
from app.models.clip.visual import OpenClipVisualEncoder
from app.schemas import ModelSource, ModelTask, ModelType
from .base import InferenceModel
from .clip import MCLIPEncoder, OpenCLIPEncoder
from .constants import is_insightface, is_mclip, is_openclip
from .facial_recognition import FaceRecognizer
from .constants import get_model_source
from .facial_recognition.detection import FaceDetector
from .facial_recognition.recognition import FaceRecognizer
def from_model_type(model_type: ModelType, model_name: str, **model_kwargs: Any) -> InferenceModel:
match model_type:
case ModelType.CLIP:
if is_openclip(model_name):
return OpenCLIPEncoder(model_name, **model_kwargs)
elif is_mclip(model_name):
return MCLIPEncoder(model_name, **model_kwargs)
case ModelType.FACIAL_RECOGNITION:
if is_insightface(model_name):
return FaceRecognizer(model_name, **model_kwargs)
def get_model_class(model_name: str, model_type: ModelType, model_task: ModelTask) -> type[InferenceModel]:
source = get_model_source(model_name)
match source, model_type, model_task:
case ModelSource.OPENCLIP | ModelSource.MCLIP, ModelType.VISUAL, ModelTask.SEARCH:
return OpenClipVisualEncoder
case ModelSource.OPENCLIP, ModelType.TEXTUAL, ModelTask.SEARCH:
return OpenClipTextualEncoder
case ModelSource.MCLIP, ModelType.TEXTUAL, ModelTask.SEARCH:
return MClipTextualEncoder
case ModelSource.INSIGHTFACE, ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION:
return FaceDetector
case ModelSource.INSIGHTFACE, ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION:
return FaceRecognizer
case _:
raise ValueError(f"Unknown model type {model_type}")
raise ValueError(f"Unknown model combination: {source}, {model_type}, {model_task}")
raise ValueError(f"Unknown {model_type} model {model_name}")
def from_model_type(model_name: str, model_type: ModelType, model_task: ModelTask, **kwargs: Any) -> InferenceModel:
return get_model_class(model_name, model_type, model_task)(model_name, **kwargs)
def get_model_deps(model_name: str, model_type: ModelType, model_task: ModelTask) -> list[tuple[ModelType, ModelTask]]:
return get_model_class(model_name, model_type, model_task).depends

View file

@ -3,7 +3,7 @@ from __future__ import annotations
from abc import ABC, abstractmethod
from pathlib import Path
from shutil import rmtree
from typing import Any
from typing import Any, ClassVar
import onnxruntime as ort
from huggingface_hub import snapshot_download
@ -11,13 +11,14 @@ from huggingface_hub import snapshot_download
import ann.ann
from app.models.constants import SUPPORTED_PROVIDERS
from ..config import get_cache_dir, get_hf_model_name, log, settings
from ..schemas import ModelRuntime, ModelType
from ..config import clean_name, log, settings
from ..schemas import ModelFormat, ModelIdentity, ModelSession, ModelTask, ModelType
from .ann import AnnSession
class InferenceModel(ABC):
_model_type: ModelType
depends: ClassVar[list[ModelIdentity]]
identity: ClassVar[ModelIdentity]
def __init__(
self,
@ -26,16 +27,16 @@ class InferenceModel(ABC):
providers: list[str] | None = None,
provider_options: list[dict[str, Any]] | None = None,
sess_options: ort.SessionOptions | None = None,
preferred_runtime: ModelRuntime | None = None,
preferred_format: ModelFormat | None = None,
**model_kwargs: Any,
) -> None:
self.loaded = False
self.model_name = model_name
self.model_name = clean_name(model_name)
self.cache_dir = Path(cache_dir) if cache_dir is not None else self.cache_dir_default
self.providers = providers if providers is not None else self.providers_default
self.provider_options = provider_options if provider_options is not None else self.provider_options_default
self.sess_options = sess_options if sess_options is not None else self.sess_options_default
self.preferred_runtime = preferred_runtime if preferred_runtime is not None else self.preferred_runtime_default
self.preferred_format = preferred_format if preferred_format is not None else self.preferred_format_default
def download(self) -> None:
if not self.cached:
@ -47,35 +48,36 @@ class InferenceModel(ABC):
def load(self) -> None:
if self.loaded:
return
self.download()
log.info(f"Loading {self.model_type.replace('-', ' ')} model '{self.model_name}' to memory")
self._load()
self.session = self._load()
self.loaded = True
def predict(self, inputs: Any, **model_kwargs: Any) -> Any:
def predict(self, *inputs: Any, **model_kwargs: Any) -> Any:
self.load()
if model_kwargs:
self.configure(**model_kwargs)
return self._predict(inputs)
return self._predict(*inputs, **model_kwargs)
@abstractmethod
def _predict(self, inputs: Any) -> Any: ...
def _predict(self, *inputs: Any, **model_kwargs: Any) -> Any: ...
def configure(self, **model_kwargs: Any) -> None:
def configure(self, **kwargs: Any) -> None:
pass
def _download(self) -> None:
ignore_patterns = [] if self.preferred_runtime == ModelRuntime.ARMNN else ["*.armnn"]
ignore_patterns = [] if self.preferred_format == ModelFormat.ARMNN else ["*.armnn"]
snapshot_download(
get_hf_model_name(self.model_name),
f"immich-app/{clean_name(self.model_name)}",
cache_dir=self.cache_dir,
local_dir=self.cache_dir,
local_dir_use_symlinks=False,
ignore_patterns=ignore_patterns,
)
@abstractmethod
def _load(self) -> None: ...
def _load(self) -> ModelSession:
return self._make_session(self.model_path)
def clear_cache(self) -> None:
if not self.cache_dir.exists():
@ -99,7 +101,7 @@ class InferenceModel(ABC):
self.cache_dir.unlink()
self.cache_dir.mkdir(parents=True, exist_ok=True)
def _make_session(self, model_path: Path) -> AnnSession | ort.InferenceSession:
def _make_session(self, model_path: Path) -> ModelSession:
if not model_path.is_file():
onnx_path = model_path.with_suffix(".onnx")
if not onnx_path.is_file():
@ -124,9 +126,21 @@ class InferenceModel(ABC):
raise ValueError(f"Unsupported model file type: {model_path.suffix}")
return session
@property
def model_dir(self) -> Path:
return self.cache_dir / self.model_type.value
@property
def model_path(self) -> Path:
return self.model_dir / f"model.{self.preferred_format}"
@property
def model_task(self) -> ModelTask:
return self.identity[1]
@property
def model_type(self) -> ModelType:
return self._model_type
return self.identity[0]
@property
def cache_dir(self) -> Path:
@ -138,11 +152,11 @@ class InferenceModel(ABC):
@property
def cache_dir_default(self) -> Path:
return get_cache_dir(self.model_name, self.model_type)
return settings.cache_folder / self.model_task.value / self.model_name
@property
def cached(self) -> bool:
return self.cache_dir.is_dir() and any(self.cache_dir.iterdir())
return self.model_path.is_file()
@property
def providers(self) -> list[str]:
@ -226,14 +240,14 @@ class InferenceModel(ABC):
return sess_options
@property
def preferred_runtime(self) -> ModelRuntime:
return self._preferred_runtime
def preferred_format(self) -> ModelFormat:
return self._preferred_format
@preferred_runtime.setter
def preferred_runtime(self, preferred_runtime: ModelRuntime) -> None:
log.debug(f"Setting preferred runtime to {preferred_runtime}")
self._preferred_runtime = preferred_runtime
@preferred_format.setter
def preferred_format(self, preferred_format: ModelFormat) -> None:
log.debug(f"Setting preferred format to {preferred_format}")
self._preferred_format = preferred_format
@property
def preferred_runtime_default(self) -> ModelRuntime:
return ModelRuntime.ARMNN if ann.ann.is_available and settings.ann else ModelRuntime.ONNX
def preferred_format_default(self) -> ModelFormat:
return ModelFormat.ARMNN if ann.ann.is_available and settings.ann else ModelFormat.ONNX

View file

@ -5,9 +5,9 @@ from aiocache.lock import OptimisticLock
from aiocache.plugins import TimingPlugin
from app.models import from_model_type
from app.models.base import InferenceModel
from ..schemas import ModelType, has_profiling
from .base import InferenceModel
from ..schemas import ModelTask, ModelType, has_profiling
class ModelCache:
@ -31,28 +31,21 @@ class ModelCache:
if profiling:
plugins.append(TimingPlugin())
self.revalidate_enable = revalidate
self.should_revalidate = revalidate
self.cache = SimpleMemoryCache(timeout=timeout, plugins=plugins, namespace=None)
async def get(self, model_name: str, model_type: ModelType, **model_kwargs: Any) -> InferenceModel:
"""
Args:
model_name: Name of model in the model hub used for the task.
model_type: Model type or task, which determines which model zoo is used.
Returns:
model: The requested model.
"""
key = f"{model_name}{model_type.value}{model_kwargs.get('mode', '')}"
async def get(
self, model_name: str, model_type: ModelType, model_task: ModelTask, **model_kwargs: Any
) -> InferenceModel:
key = f"{model_name}{model_type}{model_task}"
async with OptimisticLock(self.cache, key) as lock:
model: InferenceModel | None = await self.cache.get(key)
if model is None:
model = from_model_type(model_type, model_name, **model_kwargs)
model = from_model_type(model_name, model_type, model_task, **model_kwargs)
await lock.cas(model, ttl=model_kwargs.get("ttl", None))
elif self.revalidate_enable:
elif self.should_revalidate:
await self.revalidate(key, model_kwargs.get("ttl", None))
return model

View file

@ -1,189 +0,0 @@
import json
from abc import abstractmethod
from functools import cached_property
from io import BytesIO
from pathlib import Path
from typing import Any, Literal
import numpy as np
from numpy.typing import NDArray
from PIL import Image
from tokenizers import Encoding, Tokenizer
from app.config import clean_name, log
from app.models.transforms import crop, get_pil_resampling, normalize, resize, to_numpy
from app.schemas import ModelType
from .base import InferenceModel
class BaseCLIPEncoder(InferenceModel):
_model_type = ModelType.CLIP
def __init__(
self,
model_name: str,
cache_dir: Path | str | None = None,
mode: Literal["text", "vision"] | None = None,
**model_kwargs: Any,
) -> None:
self.mode = mode
super().__init__(model_name, cache_dir, **model_kwargs)
def _load(self) -> None:
if self.mode == "text" or self.mode is None:
log.debug(f"Loading clip text model '{self.model_name}'")
self.text_model = self._make_session(self.textual_path)
log.debug(f"Loaded clip text model '{self.model_name}'")
if self.mode == "vision" or self.mode is None:
log.debug(f"Loading clip vision model '{self.model_name}'")
self.vision_model = self._make_session(self.visual_path)
log.debug(f"Loaded clip vision model '{self.model_name}'")
def _predict(self, image_or_text: Image.Image | str) -> NDArray[np.float32]:
if isinstance(image_or_text, bytes):
image_or_text = Image.open(BytesIO(image_or_text))
match image_or_text:
case Image.Image():
if self.mode == "text":
raise TypeError("Cannot encode image as text-only model")
outputs: NDArray[np.float32] = self.vision_model.run(None, self.transform(image_or_text))[0][0]
case str():
if self.mode == "vision":
raise TypeError("Cannot encode text as vision-only model")
outputs = self.text_model.run(None, self.tokenize(image_or_text))[0][0]
case _:
raise TypeError(f"Expected Image or str, but got: {type(image_or_text)}")
return outputs
@abstractmethod
def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
pass
@abstractmethod
def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]:
pass
@property
def textual_dir(self) -> Path:
return self.cache_dir / "textual"
@property
def visual_dir(self) -> Path:
return self.cache_dir / "visual"
@property
def model_cfg_path(self) -> Path:
return self.cache_dir / "config.json"
@property
def textual_path(self) -> Path:
return self.textual_dir / f"model.{self.preferred_runtime}"
@property
def visual_path(self) -> Path:
return self.visual_dir / f"model.{self.preferred_runtime}"
@property
def tokenizer_file_path(self) -> Path:
return self.textual_dir / "tokenizer.json"
@property
def tokenizer_cfg_path(self) -> Path:
return self.textual_dir / "tokenizer_config.json"
@property
def preprocess_cfg_path(self) -> Path:
return self.visual_dir / "preprocess_cfg.json"
@property
def cached(self) -> bool:
return self.textual_path.is_file() and self.visual_path.is_file()
@cached_property
def model_cfg(self) -> dict[str, Any]:
log.debug(f"Loading model config for CLIP model '{self.model_name}'")
model_cfg: dict[str, Any] = json.load(self.model_cfg_path.open())
log.debug(f"Loaded model config for CLIP model '{self.model_name}'")
return model_cfg
@cached_property
def tokenizer_file(self) -> dict[str, Any]:
log.debug(f"Loading tokenizer file for CLIP model '{self.model_name}'")
tokenizer_file: dict[str, Any] = json.load(self.tokenizer_file_path.open())
log.debug(f"Loaded tokenizer file for CLIP model '{self.model_name}'")
return tokenizer_file
@cached_property
def tokenizer_cfg(self) -> dict[str, Any]:
log.debug(f"Loading tokenizer config for CLIP model '{self.model_name}'")
tokenizer_cfg: dict[str, Any] = json.load(self.tokenizer_cfg_path.open())
log.debug(f"Loaded tokenizer config for CLIP model '{self.model_name}'")
return tokenizer_cfg
@cached_property
def preprocess_cfg(self) -> dict[str, Any]:
log.debug(f"Loading visual preprocessing config for CLIP model '{self.model_name}'")
preprocess_cfg: dict[str, Any] = json.load(self.preprocess_cfg_path.open())
log.debug(f"Loaded visual preprocessing config for CLIP model '{self.model_name}'")
return preprocess_cfg
class OpenCLIPEncoder(BaseCLIPEncoder):
def __init__(
self,
model_name: str,
cache_dir: Path | str | None = None,
mode: Literal["text", "vision"] | None = None,
**model_kwargs: Any,
) -> None:
super().__init__(clean_name(model_name), cache_dir, mode, **model_kwargs)
def _load(self) -> None:
super()._load()
self._load_tokenizer()
size: list[int] | int = self.preprocess_cfg["size"]
self.size = size[0] if isinstance(size, list) else size
self.resampling = get_pil_resampling(self.preprocess_cfg["interpolation"])
self.mean = np.array(self.preprocess_cfg["mean"], dtype=np.float32)
self.std = np.array(self.preprocess_cfg["std"], dtype=np.float32)
def _load_tokenizer(self) -> Tokenizer:
log.debug(f"Loading tokenizer for CLIP model '{self.model_name}'")
text_cfg: dict[str, Any] = self.model_cfg["text_cfg"]
context_length: int = text_cfg.get("context_length", 77)
pad_token: str = self.tokenizer_cfg["pad_token"]
self.tokenizer: Tokenizer = Tokenizer.from_file(self.tokenizer_file_path.as_posix())
pad_id: int = self.tokenizer.token_to_id(pad_token)
self.tokenizer.enable_padding(length=context_length, pad_token=pad_token, pad_id=pad_id)
self.tokenizer.enable_truncation(max_length=context_length)
log.debug(f"Loaded tokenizer for CLIP model '{self.model_name}'")
def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
tokens: Encoding = self.tokenizer.encode(text)
return {"text": np.array([tokens.ids], dtype=np.int32)}
def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]:
image = resize(image, self.size)
image = crop(image, self.size)
image_np = to_numpy(image)
image_np = normalize(image_np, self.mean, self.std)
return {"image": np.expand_dims(image_np.transpose(2, 0, 1), 0)}
class MCLIPEncoder(OpenCLIPEncoder):
def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
tokens: Encoding = self.tokenizer.encode(text)
return {
"input_ids": np.array([tokens.ids], dtype=np.int32),
"attention_mask": np.array([tokens.attention_mask], dtype=np.int32),
}

View file

@ -0,0 +1,98 @@
import json
from abc import abstractmethod
from functools import cached_property
from pathlib import Path
from typing import Any
import numpy as np
from numpy.typing import NDArray
from tokenizers import Encoding, Tokenizer
from app.config import log
from app.models.base import InferenceModel
from app.schemas import ModelSession, ModelTask, ModelType
class BaseCLIPTextualEncoder(InferenceModel):
depends = []
identity = (ModelType.TEXTUAL, ModelTask.SEARCH)
def _predict(self, inputs: str, **kwargs: Any) -> NDArray[np.float32]:
res: NDArray[np.float32] = self.session.run(None, self.tokenize(inputs))[0][0]
return res
def _load(self) -> ModelSession:
log.debug(f"Loading tokenizer for CLIP model '{self.model_name}'")
self.tokenizer = self._load_tokenizer()
log.debug(f"Loaded tokenizer for CLIP model '{self.model_name}'")
return super()._load()
@abstractmethod
def _load_tokenizer(self) -> Tokenizer:
pass
@abstractmethod
def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
pass
@property
def model_cfg_path(self) -> Path:
return self.cache_dir / "config.json"
@property
def tokenizer_file_path(self) -> Path:
return self.model_dir / "tokenizer.json"
@property
def tokenizer_cfg_path(self) -> Path:
return self.model_dir / "tokenizer_config.json"
@cached_property
def model_cfg(self) -> dict[str, Any]:
log.debug(f"Loading model config for CLIP model '{self.model_name}'")
model_cfg: dict[str, Any] = json.load(self.model_cfg_path.open())
log.debug(f"Loaded model config for CLIP model '{self.model_name}'")
return model_cfg
@cached_property
def tokenizer_file(self) -> dict[str, Any]:
log.debug(f"Loading tokenizer file for CLIP model '{self.model_name}'")
tokenizer_file: dict[str, Any] = json.load(self.tokenizer_file_path.open())
log.debug(f"Loaded tokenizer file for CLIP model '{self.model_name}'")
return tokenizer_file
@cached_property
def tokenizer_cfg(self) -> dict[str, Any]:
log.debug(f"Loading tokenizer config for CLIP model '{self.model_name}'")
tokenizer_cfg: dict[str, Any] = json.load(self.tokenizer_cfg_path.open())
log.debug(f"Loaded tokenizer config for CLIP model '{self.model_name}'")
return tokenizer_cfg
class OpenClipTextualEncoder(BaseCLIPTextualEncoder):
def _load_tokenizer(self) -> Tokenizer:
text_cfg: dict[str, Any] = self.model_cfg["text_cfg"]
context_length: int = text_cfg.get("context_length", 77)
pad_token: str = self.tokenizer_cfg["pad_token"]
tokenizer: Tokenizer = Tokenizer.from_file(self.tokenizer_file_path.as_posix())
pad_id: int = tokenizer.token_to_id(pad_token)
tokenizer.enable_padding(length=context_length, pad_token=pad_token, pad_id=pad_id)
tokenizer.enable_truncation(max_length=context_length)
return tokenizer
def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
tokens: Encoding = self.tokenizer.encode(text)
return {"text": np.array([tokens.ids], dtype=np.int32)}
class MClipTextualEncoder(OpenClipTextualEncoder):
def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
tokens: Encoding = self.tokenizer.encode(text)
return {
"input_ids": np.array([tokens.ids], dtype=np.int32),
"attention_mask": np.array([tokens.attention_mask], dtype=np.int32),
}

View file

@ -0,0 +1,69 @@
import json
from abc import abstractmethod
from functools import cached_property
from pathlib import Path
from typing import Any
import numpy as np
from numpy.typing import NDArray
from PIL import Image
from app.config import log
from app.models.base import InferenceModel
from app.models.transforms import crop_pil, decode_pil, get_pil_resampling, normalize, resize_pil, to_numpy
from app.schemas import ModelSession, ModelTask, ModelType
class BaseCLIPVisualEncoder(InferenceModel):
depends = []
identity = (ModelType.VISUAL, ModelTask.SEARCH)
def _predict(self, inputs: Image.Image | bytes, **kwargs: Any) -> NDArray[np.float32]:
image = decode_pil(inputs)
res: NDArray[np.float32] = self.session.run(None, self.transform(image))[0][0]
return res
@abstractmethod
def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]:
pass
@property
def model_cfg_path(self) -> Path:
return self.cache_dir / "config.json"
@property
def preprocess_cfg_path(self) -> Path:
return self.model_dir / "preprocess_cfg.json"
@cached_property
def model_cfg(self) -> dict[str, Any]:
log.debug(f"Loading model config for CLIP model '{self.model_name}'")
model_cfg: dict[str, Any] = json.load(self.model_cfg_path.open())
log.debug(f"Loaded model config for CLIP model '{self.model_name}'")
return model_cfg
@cached_property
def preprocess_cfg(self) -> dict[str, Any]:
log.debug(f"Loading visual preprocessing config for CLIP model '{self.model_name}'")
preprocess_cfg: dict[str, Any] = json.load(self.preprocess_cfg_path.open())
log.debug(f"Loaded visual preprocessing config for CLIP model '{self.model_name}'")
return preprocess_cfg
class OpenClipVisualEncoder(BaseCLIPVisualEncoder):
def _load(self) -> ModelSession:
size: list[int] | int = self.preprocess_cfg["size"]
self.size = size[0] if isinstance(size, list) else size
self.resampling = get_pil_resampling(self.preprocess_cfg["interpolation"])
self.mean = np.array(self.preprocess_cfg["mean"], dtype=np.float32)
self.std = np.array(self.preprocess_cfg["std"], dtype=np.float32)
return super()._load()
def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]:
image = resize_pil(image, self.size)
image = crop_pil(image, self.size)
image_np = to_numpy(image)
image_np = normalize(image_np, self.mean, self.std)
return {"image": np.expand_dims(image_np.transpose(2, 0, 1), 0)}

View file

@ -1,4 +1,5 @@
from app.config import clean_name
from app.schemas import ModelSource
_OPENCLIP_MODELS = {
"RN50__openai",
@ -54,13 +55,16 @@ _INSIGHTFACE_MODELS = {
SUPPORTED_PROVIDERS = ["CUDAExecutionProvider", "OpenVINOExecutionProvider", "CPUExecutionProvider"]
def is_openclip(model_name: str) -> bool:
return clean_name(model_name) in _OPENCLIP_MODELS
def get_model_source(model_name: str) -> ModelSource | None:
cleaned_name = clean_name(model_name)
if cleaned_name in _INSIGHTFACE_MODELS:
return ModelSource.INSIGHTFACE
def is_mclip(model_name: str) -> bool:
return clean_name(model_name) in _MCLIP_MODELS
if cleaned_name in _MCLIP_MODELS:
return ModelSource.MCLIP
if cleaned_name in _OPENCLIP_MODELS:
return ModelSource.OPENCLIP
def is_insightface(model_name: str) -> bool:
return clean_name(model_name) in _INSIGHTFACE_MODELS
return None

View file

@ -1,90 +0,0 @@
from pathlib import Path
from typing import Any
import cv2
import numpy as np
from insightface.model_zoo import ArcFaceONNX, RetinaFace
from insightface.utils.face_align import norm_crop
from numpy.typing import NDArray
from app.config import clean_name
from app.schemas import Face, ModelType, is_ndarray
from .base import InferenceModel
class FaceRecognizer(InferenceModel):
_model_type = ModelType.FACIAL_RECOGNITION
def __init__(
self,
model_name: str,
min_score: float = 0.7,
cache_dir: Path | str | None = None,
**model_kwargs: Any,
) -> None:
self.min_score = model_kwargs.pop("minScore", min_score)
super().__init__(clean_name(model_name), cache_dir, **model_kwargs)
def _load(self) -> None:
self.det_model = RetinaFace(session=self._make_session(self.det_file))
self.rec_model = ArcFaceONNX(
self.rec_file.with_suffix(".onnx").as_posix(),
session=self._make_session(self.rec_file),
)
self.det_model.prepare(
ctx_id=0,
det_thresh=self.min_score,
input_size=(640, 640),
)
self.rec_model.prepare(ctx_id=0)
def _predict(self, image: NDArray[np.uint8] | bytes) -> list[Face]:
if isinstance(image, bytes):
decoded_image = cv2.imdecode(np.frombuffer(image, np.uint8), cv2.IMREAD_COLOR)
else:
decoded_image = image
assert is_ndarray(decoded_image, np.uint8)
bboxes, kpss = self.det_model.detect(decoded_image)
if bboxes.size == 0:
return []
assert is_ndarray(kpss, np.float32)
scores = bboxes[:, 4].tolist()
bboxes = bboxes[:, :4].round().tolist()
results = []
height, width, _ = decoded_image.shape
for (x1, y1, x2, y2), score, kps in zip(bboxes, scores, kpss):
cropped_img = norm_crop(decoded_image, kps)
embedding: NDArray[np.float32] = self.rec_model.get_feat(cropped_img)[0]
face: Face = {
"imageWidth": width,
"imageHeight": height,
"boundingBox": {
"x1": x1,
"y1": y1,
"x2": x2,
"y2": y2,
},
"score": score,
"embedding": embedding,
}
results.append(face)
return results
@property
def cached(self) -> bool:
return self.det_file.is_file() and self.rec_file.is_file()
@property
def det_file(self) -> Path:
return self.cache_dir / "detection" / f"model.{self.preferred_runtime}"
@property
def rec_file(self) -> Path:
return self.cache_dir / "recognition" / f"model.{self.preferred_runtime}"
def configure(self, **model_kwargs: Any) -> None:
self.det_model.det_thresh = model_kwargs.pop("minScore", self.det_model.det_thresh)

View file

@ -0,0 +1,48 @@
from pathlib import Path
from typing import Any
import numpy as np
from insightface.model_zoo import RetinaFace
from numpy.typing import NDArray
from app.models.base import InferenceModel
from app.models.transforms import decode_cv2
from app.schemas import FaceDetectionOutput, ModelSession, ModelTask, ModelType
class FaceDetector(InferenceModel):
depends = []
identity = (ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)
def __init__(
self,
model_name: str,
min_score: float = 0.7,
cache_dir: Path | str | None = None,
**model_kwargs: Any,
) -> None:
self.min_score = model_kwargs.pop("minScore", min_score)
super().__init__(model_name, cache_dir, **model_kwargs)
def _load(self) -> ModelSession:
session = self._make_session(self.model_path)
self.model = RetinaFace(session=session)
self.model.prepare(ctx_id=0, det_thresh=self.min_score, input_size=(640, 640))
return session
def _predict(self, inputs: NDArray[np.uint8] | bytes, **kwargs: Any) -> FaceDetectionOutput:
inputs = decode_cv2(inputs)
bboxes, landmarks = self._detect(inputs)
return {
"boxes": bboxes[:, :4].round(),
"scores": bboxes[:, 4],
"landmarks": landmarks,
}
def _detect(self, inputs: NDArray[np.uint8] | bytes) -> tuple[NDArray[np.float32], NDArray[np.float32]]:
return self.model.detect(inputs) # type: ignore
def configure(self, **kwargs: Any) -> None:
self.model.det_thresh = kwargs.pop("minScore", self.model.det_thresh)

View file

@ -0,0 +1,77 @@
from pathlib import Path
from typing import Any
import numpy as np
import onnx
import onnxruntime as ort
from insightface.model_zoo import ArcFaceONNX
from insightface.utils.face_align import norm_crop
from numpy.typing import NDArray
from onnx.tools.update_model_dims import update_inputs_outputs_dims
from PIL import Image
from app.config import clean_name, log
from app.models.base import InferenceModel
from app.models.transforms import decode_cv2
from app.schemas import FaceDetectionOutput, FacialRecognitionOutput, ModelSession, ModelTask, ModelType
class FaceRecognizer(InferenceModel):
depends = [(ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)]
identity = (ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION)
def __init__(
self,
model_name: str,
min_score: float = 0.7,
cache_dir: Path | str | None = None,
**model_kwargs: Any,
) -> None:
self.min_score = model_kwargs.pop("minScore", min_score)
super().__init__(clean_name(model_name), cache_dir, **model_kwargs)
def _load(self) -> ModelSession:
session = self._make_session(self.model_path)
if not self._has_batch_dim(session):
self._add_batch_dim(self.model_path)
session = self._make_session(self.model_path)
self.model = ArcFaceONNX(
self.model_path.with_suffix(".onnx").as_posix(),
session=session,
)
return session
def _predict(
self, inputs: NDArray[np.uint8] | bytes | Image.Image, faces: FaceDetectionOutput, **kwargs: Any
) -> FacialRecognitionOutput:
if faces["boxes"].shape[0] == 0:
return []
inputs = decode_cv2(inputs)
embeddings: NDArray[np.float32] = self.model.get_feat(self._crop(inputs, faces))
return self.postprocess(faces, embeddings)
def postprocess(self, faces: FaceDetectionOutput, embeddings: NDArray[np.float32]) -> FacialRecognitionOutput:
return [
{
"boundingBox": {"x1": x1, "y1": y1, "x2": x2, "y2": y2},
"embedding": embedding,
"score": score,
}
for (x1, y1, x2, y2), embedding, score in zip(faces["boxes"], embeddings, faces["scores"])
]
def _crop(self, image: NDArray[np.uint8], faces: FaceDetectionOutput) -> list[NDArray[np.uint8]]:
return [norm_crop(image, landmark) for landmark in faces["landmarks"]]
def _has_batch_dim(self, session: ort.InferenceSession) -> bool:
return not isinstance(session, ort.InferenceSession) or session.get_inputs()[0].shape[0] == "batch"
def _add_batch_dim(self, model_path: Path) -> None:
log.debug(f"Adding batch dimension to model {model_path}")
proto = onnx.load(model_path)
static_input_dims = [shape.dim_value for shape in proto.graph.input[0].type.tensor_type.shape.dim[1:]]
static_output_dims = [shape.dim_value for shape in proto.graph.output[0].type.tensor_type.shape.dim[1:]]
input_dims = {proto.graph.input[0].name: ["batch"] + static_input_dims}
output_dims = {proto.graph.output[0].name: ["batch"] + static_output_dims}
updated_proto = update_inputs_outputs_dims(proto, input_dims, output_dims)
onnx.save(updated_proto, model_path)

View file

View file

@ -1,3 +1,7 @@
from io import BytesIO
from typing import IO
import cv2
import numpy as np
from numpy.typing import NDArray
from PIL import Image
@ -5,7 +9,7 @@ from PIL import Image
_PIL_RESAMPLING_METHODS = {resampling.name.lower(): resampling for resampling in Image.Resampling}
def resize(img: Image.Image, size: int) -> Image.Image:
def resize_pil(img: Image.Image, size: int) -> Image.Image:
if img.width < img.height:
return img.resize((size, int((img.height / img.width) * size)), resample=Image.Resampling.BICUBIC)
else:
@ -13,7 +17,7 @@ def resize(img: Image.Image, size: int) -> Image.Image:
# https://stackoverflow.com/a/60883103
def crop(img: Image.Image, size: int) -> Image.Image:
def crop_pil(img: Image.Image, size: int) -> Image.Image:
left = int((img.size[0] / 2) - (size / 2))
upper = int((img.size[1] / 2) - (size / 2))
right = left + size
@ -23,14 +27,36 @@ def crop(img: Image.Image, size: int) -> Image.Image:
def to_numpy(img: Image.Image) -> NDArray[np.float32]:
return np.asarray(img.convert("RGB")).astype(np.float32) / 255.0
return np.asarray(img if img.mode == "RGB" else img.convert("RGB"), dtype=np.float32) / 255.0
def normalize(
img: NDArray[np.float32], mean: float | NDArray[np.float32], std: float | NDArray[np.float32]
) -> NDArray[np.float32]:
return (img - mean) / std
return np.divide(img - mean, std, dtype=np.float32)
def get_pil_resampling(resample: str) -> Image.Resampling:
return _PIL_RESAMPLING_METHODS[resample.lower()]
def pil_to_cv2(image: Image.Image) -> NDArray[np.uint8]:
return cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) # type: ignore
def decode_pil(image_bytes: bytes | IO[bytes] | Image.Image) -> Image.Image:
if isinstance(image_bytes, Image.Image):
return image_bytes
image = Image.open(BytesIO(image_bytes) if isinstance(image_bytes, bytes) else image_bytes)
image.load() # type: ignore
if not image.mode == "RGB":
image = image.convert("RGB")
return image
def decode_cv2(image_bytes: NDArray[np.uint8] | bytes | Image.Image) -> NDArray[np.uint8]:
if isinstance(image_bytes, bytes):
image_bytes = decode_pil(image_bytes) # pillow is much faster than cv2
if isinstance(image_bytes, Image.Image):
return pil_to_cv2(image_bytes)
return image_bytes

View file

@ -1,5 +1,5 @@
from enum import Enum
from typing import Any, Protocol, TypedDict, TypeGuard
from typing import Any, Literal, Protocol, TypedDict, TypeGuard, TypeVar
import numpy as np
import numpy.typing as npt
@ -28,31 +28,87 @@ class BoundingBox(TypedDict):
y2: int
class ModelType(StrEnum):
CLIP = "clip"
class ModelTask(StrEnum):
FACIAL_RECOGNITION = "facial-recognition"
SEARCH = "clip"
class ModelRuntime(StrEnum):
ONNX = "onnx"
class ModelType(StrEnum):
DETECTION = "detection"
RECOGNITION = "recognition"
TEXTUAL = "textual"
VISUAL = "visual"
class ModelFormat(StrEnum):
ARMNN = "armnn"
ONNX = "onnx"
class ModelSource(StrEnum):
INSIGHTFACE = "insightface"
MCLIP = "mclip"
OPENCLIP = "openclip"
ModelIdentity = tuple[ModelType, ModelTask]
class ModelSession(Protocol):
def run(
self,
output_names: list[str] | None,
input_feed: dict[str, npt.NDArray[np.float32]] | dict[str, npt.NDArray[np.int32]],
run_options: Any = None,
) -> list[npt.NDArray[np.float32]]: ...
class HasProfiling(Protocol):
profiling: dict[str, float]
class Face(TypedDict):
class FaceDetectionOutput(TypedDict):
boxes: npt.NDArray[np.float32]
scores: npt.NDArray[np.float32]
landmarks: npt.NDArray[np.float32]
class DetectedFace(TypedDict):
boundingBox: BoundingBox
embedding: npt.NDArray[np.float32]
imageWidth: int
imageHeight: int
score: float
FacialRecognitionOutput = list[DetectedFace]
class PipelineEntry(TypedDict):
modelName: str
options: dict[str, Any]
PipelineRequest = dict[ModelTask, dict[ModelType, PipelineEntry]]
class InferenceEntry(TypedDict):
name: str
task: ModelTask
type: ModelType
options: dict[str, Any]
InferenceEntries = tuple[list[InferenceEntry], list[InferenceEntry]]
InferenceResponse = dict[ModelTask | Literal["imageHeight"] | Literal["imageWidth"], Any]
def has_profiling(obj: Any) -> TypeGuard[HasProfiling]:
return hasattr(obj, "profiling") and isinstance(obj.profiling, dict)
def is_ndarray(obj: Any, dtype: "type[np._DTypeScalar_co]") -> "TypeGuard[npt.NDArray[np._DTypeScalar_co]]":
return isinstance(obj, np.ndarray) and obj.dtype == dtype
T = TypeVar("T")

View file

@ -17,13 +17,15 @@ from pytest import MonkeyPatch
from pytest_mock import MockerFixture
from app.main import load, preload_models
from app.models.clip.textual import MClipTextualEncoder, OpenClipTextualEncoder
from app.models.clip.visual import OpenClipVisualEncoder
from app.models.facial_recognition.detection import FaceDetector
from app.models.facial_recognition.recognition import FaceRecognizer
from .config import Settings, log, settings
from .models.base import InferenceModel
from .models.cache import ModelCache
from .models.clip import MCLIPEncoder, OpenCLIPEncoder
from .models.facial_recognition import FaceRecognizer
from .schemas import ModelRuntime, ModelType
from .schemas import ModelFormat, ModelTask, ModelType
class TestBase:
@ -35,13 +37,13 @@ class TestBase:
@pytest.mark.providers(CPU_EP)
def test_sets_cpu_provider(self, providers: list[str]) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
encoder = OpenClipTextualEncoder("ViT-B-32__openai")
assert encoder.providers == self.CPU_EP
@pytest.mark.providers(CUDA_EP)
def test_sets_cuda_provider_if_available(self, providers: list[str]) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
encoder = OpenClipTextualEncoder("ViT-B-32__openai")
assert encoder.providers == self.CUDA_EP
@ -50,7 +52,7 @@ class TestBase:
mocked = mocker.patch("app.models.base.ort.capi._pybind_state")
mocked.get_available_openvino_device_ids.return_value = ["GPU.0", "CPU"]
encoder = OpenCLIPEncoder("ViT-B-32__openai")
encoder = OpenClipTextualEncoder("ViT-B-32__openai")
assert encoder.providers == self.OV_EP
@ -59,25 +61,25 @@ class TestBase:
mocked = mocker.patch("app.models.base.ort.capi._pybind_state")
mocked.get_available_openvino_device_ids.return_value = ["CPU"]
encoder = OpenCLIPEncoder("ViT-B-32__openai")
encoder = OpenClipTextualEncoder("ViT-B-32__openai")
assert encoder.providers == self.CPU_EP
@pytest.mark.providers(CUDA_EP_OUT_OF_ORDER)
def test_sets_providers_in_correct_order(self, providers: list[str]) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
encoder = OpenClipTextualEncoder("ViT-B-32__openai")
assert encoder.providers == self.CUDA_EP
@pytest.mark.providers(TRT_EP)
def test_ignores_unsupported_providers(self, providers: list[str]) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
encoder = OpenClipTextualEncoder("ViT-B-32__openai")
assert encoder.providers == self.CUDA_EP
def test_sets_provider_kwarg(self) -> None:
providers = ["CUDAExecutionProvider"]
encoder = OpenCLIPEncoder("ViT-B-32__openai", providers=providers)
encoder = OpenClipTextualEncoder("ViT-B-32__openai", providers=providers)
assert encoder.providers == providers
@ -85,7 +87,9 @@ class TestBase:
mocked = mocker.patch("app.models.base.ort.capi._pybind_state")
mocked.get_available_openvino_device_ids.return_value = ["GPU.0", "CPU"]
encoder = OpenCLIPEncoder("ViT-B-32__openai", providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"])
encoder = OpenClipTextualEncoder(
"ViT-B-32__openai", providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"]
)
assert encoder.provider_options == [
{"device_type": "GPU_FP32", "cache_dir": (encoder.cache_dir / "openvino").as_posix()},
@ -93,7 +97,7 @@ class TestBase:
]
def test_sets_provider_options_kwarg(self) -> None:
encoder = OpenCLIPEncoder(
encoder = OpenClipTextualEncoder(
"ViT-B-32__openai",
providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"],
provider_options=[],
@ -102,7 +106,7 @@ class TestBase:
assert encoder.provider_options == []
def test_sets_default_sess_options(self) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
encoder = OpenClipTextualEncoder("ViT-B-32__openai")
assert encoder.sess_options.execution_mode == ort.ExecutionMode.ORT_SEQUENTIAL
assert encoder.sess_options.inter_op_num_threads == 1
@ -110,7 +114,9 @@ class TestBase:
assert encoder.sess_options.enable_cpu_mem_arena is False
def test_sets_default_sess_options_does_not_set_threads_if_non_cpu_and_default_threads(self) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai", providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
encoder = OpenClipTextualEncoder(
"ViT-B-32__openai", providers=["CUDAExecutionProvider", "CPUExecutionProvider"]
)
assert encoder.sess_options.inter_op_num_threads == 0
assert encoder.sess_options.intra_op_num_threads == 0
@ -120,14 +126,16 @@ class TestBase:
mock_settings.model_inter_op_threads = 2
mock_settings.model_intra_op_threads = 4
encoder = OpenCLIPEncoder("ViT-B-32__openai", providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
encoder = OpenClipTextualEncoder(
"ViT-B-32__openai", providers=["CUDAExecutionProvider", "CPUExecutionProvider"]
)
assert encoder.sess_options.inter_op_num_threads == 2
assert encoder.sess_options.intra_op_num_threads == 4
def test_sets_sess_options_kwarg(self) -> None:
sess_options = ort.SessionOptions()
encoder = OpenCLIPEncoder(
encoder = OpenClipTextualEncoder(
"ViT-B-32__openai",
providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"],
provider_options=[],
@ -137,43 +145,43 @@ class TestBase:
assert sess_options is encoder.sess_options
def test_sets_default_cache_dir(self) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
encoder = OpenClipTextualEncoder("ViT-B-32__openai")
assert encoder.cache_dir == Path(settings.cache_folder) / "clip" / "ViT-B-32__openai"
def test_sets_cache_dir_kwarg(self) -> None:
cache_dir = Path("/test_cache")
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=cache_dir)
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=cache_dir)
assert encoder.cache_dir == cache_dir
def test_sets_default_preferred_runtime(self, mocker: MockerFixture) -> None:
def test_sets_default_preferred_format(self, mocker: MockerFixture) -> None:
mocker.patch.object(settings, "ann", True)
mocker.patch("ann.ann.is_available", False)
encoder = OpenCLIPEncoder("ViT-B-32__openai")
encoder = OpenClipTextualEncoder("ViT-B-32__openai")
assert encoder.preferred_runtime == ModelRuntime.ONNX
assert encoder.preferred_format == ModelFormat.ONNX
def test_sets_default_preferred_runtime_to_armnn_if_available(self, mocker: MockerFixture) -> None:
def test_sets_default_preferred_format_to_armnn_if_available(self, mocker: MockerFixture) -> None:
mocker.patch.object(settings, "ann", True)
mocker.patch("ann.ann.is_available", True)
encoder = OpenCLIPEncoder("ViT-B-32__openai")
encoder = OpenClipTextualEncoder("ViT-B-32__openai")
assert encoder.preferred_runtime == ModelRuntime.ARMNN
assert encoder.preferred_format == ModelFormat.ARMNN
def test_sets_preferred_runtime_kwarg(self, mocker: MockerFixture) -> None:
def test_sets_preferred_format_kwarg(self, mocker: MockerFixture) -> None:
mocker.patch.object(settings, "ann", False)
mocker.patch("ann.ann.is_available", False)
encoder = OpenCLIPEncoder("ViT-B-32__openai", preferred_runtime=ModelRuntime.ARMNN)
encoder = OpenClipTextualEncoder("ViT-B-32__openai", preferred_format=ModelFormat.ARMNN)
assert encoder.preferred_runtime == ModelRuntime.ARMNN
assert encoder.preferred_format == ModelFormat.ARMNN
def test_casts_cache_dir_string_to_path(self) -> None:
cache_dir = "/test_cache"
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=cache_dir)
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=cache_dir)
assert encoder.cache_dir == Path(cache_dir)
@ -186,7 +194,7 @@ class TestBase:
mocker.patch("app.models.base.Path", return_value=mock_cache_dir)
info = mocker.spy(log, "info")
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
encoder.clear_cache()
mock_rmtree.assert_called_once_with(encoder.cache_dir)
@ -201,7 +209,7 @@ class TestBase:
mocker.patch("app.models.base.Path", return_value=mock_cache_dir)
warning = mocker.spy(log, "warning")
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
encoder.clear_cache()
mock_rmtree.assert_not_called()
@ -215,7 +223,7 @@ class TestBase:
mock_cache_dir.is_dir.return_value = True
mocker.patch("app.models.base.Path", return_value=mock_cache_dir)
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
with pytest.raises(RuntimeError):
encoder.clear_cache()
@ -230,7 +238,7 @@ class TestBase:
mocker.patch("app.models.base.Path", return_value=mock_cache_dir)
warning = mocker.spy(log, "warning")
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
encoder.clear_cache()
mock_rmtree.assert_not_called()
@ -245,7 +253,7 @@ class TestBase:
mock_model_path.with_suffix.return_value = mock_model_path
mock_ann = mocker.patch("app.models.base.AnnSession")
encoder = OpenCLIPEncoder("ViT-B-32__openai")
encoder = OpenClipTextualEncoder("ViT-B-32__openai")
encoder._make_session(mock_model_path)
mock_ann.assert_called_once()
@ -263,7 +271,7 @@ class TestBase:
mock_ann = mocker.patch("app.models.base.AnnSession")
mock_ort = mocker.patch("app.models.base.ort.InferenceSession")
encoder = OpenCLIPEncoder("ViT-B-32__openai")
encoder = OpenClipTextualEncoder("ViT-B-32__openai")
encoder._make_session(mock_armnn_path)
mock_ort.assert_called_once()
@ -277,7 +285,7 @@ class TestBase:
mock_ann = mocker.patch("app.models.base.AnnSession")
mock_ort = mocker.patch("app.models.base.ort.InferenceSession")
encoder = OpenCLIPEncoder("ViT-B-32__openai")
encoder = OpenClipTextualEncoder("ViT-B-32__openai")
with pytest.raises(ValueError):
encoder._make_session(mock_model_path)
@ -287,7 +295,7 @@ class TestBase:
def test_download(self, mocker: MockerFixture) -> None:
mock_snapshot_download = mocker.patch("app.models.base.snapshot_download")
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir="/path/to/cache")
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir="/path/to/cache")
encoder.download()
mock_snapshot_download.assert_called_once_with(
@ -298,10 +306,10 @@ class TestBase:
ignore_patterns=["*.armnn"],
)
def test_download_downloads_armnn_if_preferred_runtime(self, mocker: MockerFixture) -> None:
def test_download_downloads_armnn_if_preferred_format(self, mocker: MockerFixture) -> None:
mock_snapshot_download = mocker.patch("app.models.base.snapshot_download")
encoder = OpenCLIPEncoder("ViT-B-32__openai", preferred_runtime=ModelRuntime.ARMNN)
encoder = OpenClipTextualEncoder("ViT-B-32__openai", preferred_format=ModelFormat.ARMNN)
encoder.download()
mock_snapshot_download.assert_called_once_with(
@ -323,21 +331,17 @@ class TestCLIP:
mocker: MockerFixture,
clip_model_cfg: dict[str, Any],
clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
) -> None:
mocker.patch.object(OpenCLIPEncoder, "download")
mocker.patch.object(OpenCLIPEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(OpenCLIPEncoder, "preprocess_cfg", clip_preprocess_cfg)
mocker.patch.object(OpenCLIPEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
mocker.patch.object(OpenClipVisualEncoder, "download")
mocker.patch.object(OpenClipVisualEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(OpenClipVisualEncoder, "preprocess_cfg", clip_preprocess_cfg)
mocked = mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
mocked.run.return_value = [[self.embedding]]
mocker.patch("app.models.clip.Tokenizer.from_file", autospec=True)
clip_encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir="test_cache", mode="vision")
clip_encoder = OpenClipVisualEncoder("ViT-B-32__openai", cache_dir="test_cache")
embedding = clip_encoder.predict(pil_image)
assert clip_encoder.mode == "vision"
assert isinstance(embedding, np.ndarray)
assert embedding.shape[0] == clip_model_cfg["embed_dim"]
assert embedding.dtype == np.float32
@ -347,22 +351,19 @@ class TestCLIP:
self,
mocker: MockerFixture,
clip_model_cfg: dict[str, Any],
clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
) -> None:
mocker.patch.object(OpenCLIPEncoder, "download")
mocker.patch.object(OpenCLIPEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(OpenCLIPEncoder, "preprocess_cfg", clip_preprocess_cfg)
mocker.patch.object(OpenCLIPEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
mocker.patch.object(OpenClipTextualEncoder, "download")
mocker.patch.object(OpenClipTextualEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(OpenClipTextualEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
mocked = mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
mocked.run.return_value = [[self.embedding]]
mocker.patch("app.models.clip.Tokenizer.from_file", autospec=True)
mocker.patch("app.models.clip.textual.Tokenizer.from_file", autospec=True)
clip_encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir="test_cache", mode="text")
clip_encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir="test_cache")
embedding = clip_encoder.predict("test search query")
assert clip_encoder.mode == "text"
assert isinstance(embedding, np.ndarray)
assert embedding.shape[0] == clip_model_cfg["embed_dim"]
assert embedding.dtype == np.float32
@ -372,19 +373,18 @@ class TestCLIP:
self,
mocker: MockerFixture,
clip_model_cfg: dict[str, Any],
clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
) -> None:
mocker.patch.object(OpenCLIPEncoder, "download")
mocker.patch.object(OpenCLIPEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(OpenCLIPEncoder, "preprocess_cfg", clip_preprocess_cfg)
mocker.patch.object(OpenCLIPEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
mock_tokenizer = mocker.patch("app.models.clip.Tokenizer.from_file", autospec=True).return_value
mocker.patch.object(OpenClipTextualEncoder, "download")
mocker.patch.object(OpenClipTextualEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(OpenClipTextualEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
mock_tokenizer = mocker.patch("app.models.clip.textual.Tokenizer.from_file", autospec=True).return_value
mock_ids = [randint(0, 50000) for _ in range(77)]
mock_tokenizer.encode.return_value = SimpleNamespace(ids=mock_ids)
clip_encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir="test_cache", mode="text")
clip_encoder._load_tokenizer()
clip_encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir="test_cache")
clip_encoder._load()
tokens = clip_encoder.tokenize("test search query")
assert "text" in tokens
@ -397,20 +397,19 @@ class TestCLIP:
self,
mocker: MockerFixture,
clip_model_cfg: dict[str, Any],
clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
) -> None:
mocker.patch.object(OpenCLIPEncoder, "download")
mocker.patch.object(OpenCLIPEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(OpenCLIPEncoder, "preprocess_cfg", clip_preprocess_cfg)
mocker.patch.object(OpenCLIPEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
mock_tokenizer = mocker.patch("app.models.clip.Tokenizer.from_file", autospec=True).return_value
mocker.patch.object(MClipTextualEncoder, "download")
mocker.patch.object(MClipTextualEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(MClipTextualEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
mock_tokenizer = mocker.patch("app.models.clip.textual.Tokenizer.from_file", autospec=True).return_value
mock_ids = [randint(0, 50000) for _ in range(77)]
mock_attention_mask = [randint(0, 1) for _ in range(77)]
mock_tokenizer.encode.return_value = SimpleNamespace(ids=mock_ids, attention_mask=mock_attention_mask)
clip_encoder = MCLIPEncoder("ViT-B-32__openai", cache_dir="test_cache", mode="text")
clip_encoder._load_tokenizer()
clip_encoder = MClipTextualEncoder("ViT-B-32__openai", cache_dir="test_cache")
clip_encoder._load()
tokens = clip_encoder.tokenize("test search query")
assert "input_ids" in tokens
@ -430,59 +429,90 @@ class TestFaceRecognition:
assert face_recognizer.min_score == 0.5
def test_basic(self, cv_image: cv2.Mat, mocker: MockerFixture) -> None:
mocker.patch.object(FaceRecognizer, "load")
face_recognizer = FaceRecognizer("buffalo_s", min_score=0.0, cache_dir="test_cache")
def test_detection(self, cv_image: cv2.Mat, mocker: MockerFixture) -> None:
mocker.patch.object(FaceDetector, "load")
face_detector = FaceDetector("buffalo_s", min_score=0.0, cache_dir="test_cache")
det_model = mock.Mock()
num_faces = 2
bbox = np.random.rand(num_faces, 4).astype(np.float32)
score = np.array([[0.67]] * num_faces).astype(np.float32)
scores = np.array([[0.67]] * num_faces).astype(np.float32)
kpss = np.random.rand(num_faces, 5, 2).astype(np.float32)
det_model.detect.return_value = (np.concatenate([bbox, score], axis=-1), kpss)
face_recognizer.det_model = det_model
det_model.detect.return_value = (np.concatenate([bbox, scores], axis=-1), kpss)
face_detector.model = det_model
faces = face_detector.predict(cv_image)
assert isinstance(faces, dict)
assert isinstance(faces.get("boxes", None), np.ndarray)
assert isinstance(faces.get("landmarks", None), np.ndarray)
assert isinstance(faces.get("scores", None), np.ndarray)
assert np.equal(faces["boxes"], bbox.round()).all()
assert np.equal(faces["landmarks"], kpss).all()
assert np.equal(faces["scores"], scores).all()
det_model.detect.assert_called_once()
def test_recognition(self, cv_image: cv2.Mat, mocker: MockerFixture) -> None:
mocker.patch.object(FaceRecognizer, "load")
face_recognizer = FaceRecognizer("buffalo_s", min_score=0.0, cache_dir="test_cache")
num_faces = 2
bbox = np.random.rand(num_faces, 4).astype(np.float32)
scores = np.array([0.67] * num_faces).astype(np.float32)
kpss = np.random.rand(num_faces, 5, 2).astype(np.float32)
faces = {"boxes": bbox, "landmarks": kpss, "scores": scores}
rec_model = mock.Mock()
embedding = np.random.rand(num_faces, 512).astype(np.float32)
rec_model.get_feat.return_value = embedding
face_recognizer.rec_model = rec_model
face_recognizer.model = rec_model
faces = face_recognizer.predict(cv_image)
faces = face_recognizer.predict(cv_image, faces)
assert isinstance(faces, list)
assert len(faces) == num_faces
for face in faces:
assert face["imageHeight"] == 800
assert face["imageWidth"] == 600
assert isinstance(face["embedding"], np.ndarray)
assert isinstance(face.get("boundingBox"), dict)
assert set(face["boundingBox"]) == {"x1", "y1", "x2", "y2"}
assert all(isinstance(val, np.float32) for val in face["boundingBox"].values())
assert isinstance(face.get("embedding"), np.ndarray)
assert face["embedding"].shape[0] == 512
assert face["embedding"].dtype == np.float32
assert isinstance(face.get("score", None), np.float32)
det_model.detect.assert_called_once()
assert rec_model.get_feat.call_count == num_faces
rec_model.get_feat.assert_called_once()
call_args = rec_model.get_feat.call_args_list[0].args
assert len(call_args) == 1
assert isinstance(call_args[0], list)
assert isinstance(call_args[0][0], np.ndarray)
assert call_args[0][0].shape == (112, 112, 3)
@pytest.mark.asyncio
class TestCache:
async def test_caches(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION)
await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION)
assert len(model_cache.cache._cache) == 1
mock_get_model.assert_called_once()
async def test_kwargs_used(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION, cache_dir="test_cache")
mock_get_model.assert_called_once_with(ModelType.FACIAL_RECOGNITION, "test_model_name", cache_dir="test_cache")
await model_cache.get(
"test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, cache_dir="test_cache"
)
mock_get_model.assert_called_once_with(
"test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, cache_dir="test_cache"
)
async def test_different_clip(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get("test_image_model_name", ModelType.CLIP)
await model_cache.get("test_text_model_name", ModelType.CLIP)
await model_cache.get("test_model_name", ModelType.VISUAL, ModelTask.SEARCH)
await model_cache.get("test_model_name", ModelType.TEXTUAL, ModelTask.SEARCH)
mock_get_model.assert_has_calls(
[
mock.call(ModelType.CLIP, "test_image_model_name"),
mock.call(ModelType.CLIP, "test_text_model_name"),
mock.call("test_model_name", ModelType.VISUAL, ModelTask.SEARCH),
mock.call("test_model_name", ModelType.TEXTUAL, ModelTask.SEARCH),
]
)
assert len(model_cache.cache._cache) == 2
@ -490,19 +520,19 @@ class TestCache:
@mock.patch("app.models.cache.OptimisticLock", autospec=True)
async def test_model_ttl(self, mock_lock_cls: mock.Mock, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION, ttl=100)
await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, ttl=100)
mock_lock_cls.return_value.__aenter__.return_value.cas.assert_called_with(mock.ANY, ttl=100)
@mock.patch("app.models.cache.SimpleMemoryCache.expire")
async def test_revalidate_get(self, mock_cache_expire: mock.Mock, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache(revalidate=True)
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION, ttl=100)
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION, ttl=100)
await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, ttl=100)
await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, ttl=100)
mock_cache_expire.assert_called_once_with(mock.ANY, 100)
async def test_profiling(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache(profiling=True)
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION, ttl=100)
await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, ttl=100)
profiling = await model_cache.get_profiling()
assert isinstance(profiling, dict)
assert profiling == model_cache.cache.profiling
@ -510,9 +540,9 @@ class TestCache:
async def test_loads_mclip(self) -> None:
model_cache = ModelCache()
model = await model_cache.get("XLM-Roberta-Large-Vit-B-32", ModelType.CLIP, mode="text")
model = await model_cache.get("XLM-Roberta-Large-Vit-B-32", ModelType.TEXTUAL, ModelTask.SEARCH)
assert isinstance(model, MCLIPEncoder)
assert isinstance(model, MClipTextualEncoder)
assert model.model_name == "XLM-Roberta-Large-Vit-B-32"
async def test_raises_exception_if_invalid_model_type(self) -> None:
@ -520,15 +550,55 @@ class TestCache:
model_cache = ModelCache()
with pytest.raises(ValueError):
await model_cache.get("XLM-Roberta-Large-Vit-B-32", invalid, mode="text")
await model_cache.get("XLM-Roberta-Large-Vit-B-32", ModelType.TEXTUAL, invalid)
async def test_raises_exception_if_unknown_model_name(self) -> None:
model_cache = ModelCache()
with pytest.raises(ValueError):
await model_cache.get("test_model_name", ModelType.CLIP, mode="text")
await model_cache.get("test_model_name", ModelType.TEXTUAL, ModelTask.SEARCH)
async def test_preloads_models(self, monkeypatch: MonkeyPatch, mock_get_model: mock.Mock) -> None:
async def test_preloads_clip_models(self, monkeypatch: MonkeyPatch, mock_get_model: mock.Mock) -> None:
os.environ["MACHINE_LEARNING_PRELOAD__CLIP"] = "ViT-B-32__openai"
settings = Settings()
assert settings.preload is not None
assert settings.preload.clip == "ViT-B-32__openai"
model_cache = ModelCache()
monkeypatch.setattr("app.main.model_cache", model_cache)
await preload_models(settings.preload)
mock_get_model.assert_has_calls(
[
mock.call("ViT-B-32__openai", ModelType.TEXTUAL, ModelTask.SEARCH),
mock.call("ViT-B-32__openai", ModelType.VISUAL, ModelTask.SEARCH),
],
any_order=True,
)
async def test_preloads_facial_recognition_models(
self, monkeypatch: MonkeyPatch, mock_get_model: mock.Mock
) -> None:
os.environ["MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION"] = "buffalo_s"
settings = Settings()
assert settings.preload is not None
assert settings.preload.facial_recognition == "buffalo_s"
model_cache = ModelCache()
monkeypatch.setattr("app.main.model_cache", model_cache)
await preload_models(settings.preload)
mock_get_model.assert_has_calls(
[
mock.call("buffalo_s", ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION),
mock.call("buffalo_s", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION),
],
any_order=True,
)
async def test_preloads_all_models(self, monkeypatch: MonkeyPatch, mock_get_model: mock.Mock) -> None:
os.environ["MACHINE_LEARNING_PRELOAD__CLIP"] = "ViT-B-32__openai"
os.environ["MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION"] = "buffalo_s"
@ -541,11 +611,15 @@ class TestCache:
monkeypatch.setattr("app.main.model_cache", model_cache)
await preload_models(settings.preload)
assert len(model_cache.cache._cache) == 2
assert mock_get_model.call_count == 2
await model_cache.get("ViT-B-32__openai", ModelType.CLIP, ttl=100)
await model_cache.get("buffalo_s", ModelType.FACIAL_RECOGNITION, ttl=100)
assert mock_get_model.call_count == 2
mock_get_model.assert_has_calls(
[
mock.call("ViT-B-32__openai", ModelType.TEXTUAL, ModelTask.SEARCH),
mock.call("ViT-B-32__openai", ModelType.VISUAL, ModelTask.SEARCH),
mock.call("buffalo_s", ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION),
mock.call("buffalo_s", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION),
],
any_order=True,
)
@pytest.mark.asyncio
@ -572,7 +646,8 @@ class TestLoad:
async def test_load_clears_cache_and_retries_if_os_error(self) -> None:
mock_model = mock.Mock(spec=InferenceModel)
mock_model.model_name = "test_model_name"
mock_model.model_type = ModelType.CLIP
mock_model.model_type = ModelType.VISUAL
mock_model.model_task = ModelTask.SEARCH
mock_model.load.side_effect = [OSError, None]
mock_model.loaded = False
@ -597,13 +672,15 @@ class TestEndpoints:
response = deployed_app.post(
"http://localhost:3003/predict",
data={"modelName": "ViT-B-32__openai", "modelType": "clip", "options": json.dumps({"mode": "vision"})},
data={"entries": json.dumps({"clip": {"visual": {"modelName": "ViT-B-32__openai"}}})},
files={"image": byte_image.getvalue()},
)
actual = response.json()
assert response.status_code == 200
assert np.allclose(expected, actual)
assert isinstance(actual, dict)
assert isinstance(actual.get("clip", None), list)
assert np.allclose(expected, actual["clip"])
def test_clip_text_endpoint(self, responses: dict[str, Any], deployed_app: TestClient) -> None:
expected = responses["clip"]["text"]
@ -611,38 +688,49 @@ class TestEndpoints:
response = deployed_app.post(
"http://localhost:3003/predict",
data={
"modelName": "ViT-B-32__openai",
"modelType": "clip",
"entries": json.dumps(
{
"clip": {"textual": {"modelName": "ViT-B-32__openai"}},
},
),
"text": "test search query",
"options": json.dumps({"mode": "text"}),
},
)
actual = response.json()
assert response.status_code == 200
assert np.allclose(expected, actual)
assert isinstance(actual, dict)
assert isinstance(actual.get("clip", None), list)
assert np.allclose(expected, actual["clip"])
def test_face_endpoint(self, pil_image: Image.Image, responses: dict[str, Any], deployed_app: TestClient) -> None:
byte_image = BytesIO()
pil_image.save(byte_image, format="jpeg")
expected = responses["facial-recognition"]
response = deployed_app.post(
"http://localhost:3003/predict",
data={
"modelName": "buffalo_l",
"modelType": "facial-recognition",
"options": json.dumps({"minScore": 0.034}),
"entries": json.dumps(
{
"facial-recognition": {
"detection": {"modelName": "buffalo_l", "options": {"minScore": 0.034}},
"recognition": {"modelName": "buffalo_l"},
}
}
)
},
files={"image": byte_image.getvalue()},
)
actual = response.json()
assert response.status_code == 200
assert len(expected) == len(actual)
for expected_face, actual_face in zip(expected, actual):
assert expected_face["imageHeight"] == actual_face["imageHeight"]
assert expected_face["imageWidth"] == actual_face["imageWidth"]
assert isinstance(actual, dict)
assert actual.get("imageHeight", None) == responses["imageHeight"]
assert actual.get("imageWidth", None) == responses["imageWidth"]
assert "facial-recognition" in actual and isinstance(actual["facial-recognition"], list)
assert len(actual["facial-recognition"]) == len(responses["facial-recognition"])
for expected_face, actual_face in zip(responses["facial-recognition"], actual["facial-recognition"]):
assert expected_face["boundingBox"] == actual_face["boundingBox"]
assert np.allclose(expected_face["embedding"], actual_face["embedding"])
assert np.allclose(expected_face["score"], actual_face["score"])

View file

@ -37,7 +37,6 @@ def on_test_start(environment: Environment, **kwargs: Any) -> None:
global byte_image
assert environment.parsed_options is not None
image = Image.new("RGB", (environment.parsed_options.image_size, environment.parsed_options.image_size))
byte_image = BytesIO()
image.save(byte_image, format="jpeg")
@ -45,34 +44,25 @@ class InferenceLoadTest(HttpUser):
abstract: bool = True
host = "http://127.0.0.1:3003"
data: bytes
headers: dict[str, str] = {"Content-Type": "image/jpg"}
# re-use the image across all instances in a process
def on_start(self) -> None:
global byte_image
self.data = byte_image.getvalue()
class CLIPTextFormDataLoadTest(InferenceLoadTest):
@task
def encode_text(self) -> None:
data = [
("modelName", self.environment.parsed_options.clip_model),
("modelType", "clip"),
("options", json.dumps({"mode": "text"})),
("text", "test search query"),
]
request = {"clip": {"textual": {"modelName": self.environment.parsed_options.clip_model}}}
data = [("entries", json.dumps(request)), ("text", "test search query")]
self.client.post("/predict", data=data)
class CLIPVisionFormDataLoadTest(InferenceLoadTest):
@task
def encode_image(self) -> None:
data = [
("modelName", self.environment.parsed_options.clip_model),
("modelType", "clip"),
("options", json.dumps({"mode": "vision"})),
]
request = {"clip": {"visual": {"modelName": self.environment.parsed_options.clip_model, "options": {}}}}
data = [("entries", json.dumps(request))]
files = {"image": self.data}
self.client.post("/predict", data=data, files=files)
@ -80,11 +70,18 @@ class CLIPVisionFormDataLoadTest(InferenceLoadTest):
class RecognitionFormDataLoadTest(InferenceLoadTest):
@task
def recognize(self) -> None:
data = [
("modelName", self.environment.parsed_options.face_model),
("modelType", "facial-recognition"),
("options", json.dumps({"minScore": self.environment.parsed_options.face_min_score})),
]
request = {
"facial-recognition": {
"recognition": {
"modelName": self.environment.parsed_options.face_model,
"options": {"minScore": self.environment.parsed_options.face_min_score},
},
"detection": {
"modelName": self.environment.parsed_options.face_model,
},
}
}
data = [("entries", json.dumps(request))]
files = {"image": self.data}
self.client.post("/predict", data=data, files=files)

View file

@ -213,8 +213,6 @@
},
"facial-recognition": [
{
"imageWidth": 600,
"imageHeight": 800,
"boundingBox": {
"x1": 690.0,
"y1": -89.0,
@ -325,5 +323,7 @@
-0.077056274, 0.002099529
]
}
]
],
"imageWidth": 600,
"imageHeight": 800
}

BIN
mobile/openapi/README.md generated

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View file

@ -7878,14 +7878,8 @@
"enabled": {
"type": "boolean"
},
"mode": {
"$ref": "#/components/schemas/CLIPMode"
},
"modelName": {
"type": "string"
},
"modelType": {
"$ref": "#/components/schemas/ModelType"
}
},
"required": [
@ -7894,13 +7888,6 @@
],
"type": "object"
},
"CLIPMode": {
"enum": [
"vision",
"text"
],
"type": "string"
},
"CQMode": {
"enum": [
"auto",
@ -8323,6 +8310,40 @@
],
"type": "object"
},
"FacialRecognitionConfig": {
"properties": {
"enabled": {
"type": "boolean"
},
"maxDistance": {
"format": "float",
"maximum": 2,
"minimum": 0,
"type": "number"
},
"minFaces": {
"minimum": 1,
"type": "integer"
},
"minScore": {
"format": "float",
"maximum": 1,
"minimum": 0,
"type": "number"
},
"modelName": {
"type": "string"
}
},
"required": [
"enabled",
"maxDistance",
"minFaces",
"minScore",
"modelName"
],
"type": "object"
},
"FileChecksumDto": {
"properties": {
"filenames": {
@ -9039,13 +9060,6 @@
},
"type": "object"
},
"ModelType": {
"enum": [
"facial-recognition",
"clip"
],
"type": "string"
},
"OAuthAuthorizeResponseDto": {
"properties": {
"url": {
@ -9379,43 +9393,6 @@
],
"type": "string"
},
"RecognitionConfig": {
"properties": {
"enabled": {
"type": "boolean"
},
"maxDistance": {
"format": "float",
"maximum": 2,
"minimum": 0,
"type": "number"
},
"minFaces": {
"minimum": 1,
"type": "integer"
},
"minScore": {
"format": "float",
"maximum": 1,
"minimum": 0,
"type": "number"
},
"modelName": {
"type": "string"
},
"modelType": {
"$ref": "#/components/schemas/ModelType"
}
},
"required": [
"enabled",
"maxDistance",
"minFaces",
"minScore",
"modelName"
],
"type": "object"
},
"ReverseGeocodingStateResponseDto": {
"properties": {
"lastImportFileName": {
@ -10521,7 +10498,7 @@
"type": "boolean"
},
"facialRecognition": {
"$ref": "#/components/schemas/RecognitionConfig"
"$ref": "#/components/schemas/FacialRecognitionConfig"
},
"url": {
"type": "string"

View file

@ -962,27 +962,24 @@ export type SystemConfigLoggingDto = {
};
export type ClipConfig = {
enabled: boolean;
mode?: CLIPMode;
modelName: string;
modelType?: ModelType;
};
export type DuplicateDetectionConfig = {
enabled: boolean;
maxDistance: number;
};
export type RecognitionConfig = {
export type FacialRecognitionConfig = {
enabled: boolean;
maxDistance: number;
minFaces: number;
minScore: number;
modelName: string;
modelType?: ModelType;
};
export type SystemConfigMachineLearningDto = {
clip: ClipConfig;
duplicateDetection: DuplicateDetectionConfig;
enabled: boolean;
facialRecognition: RecognitionConfig;
facialRecognition: FacialRecognitionConfig;
url: string;
};
export type SystemConfigMapDto = {
@ -3074,14 +3071,6 @@ export enum LogLevel {
Error = "error",
Fatal = "fatal"
}
export enum CLIPMode {
Vision = "vision",
Text = "text"
}
export enum ModelType {
FacialRecognition = "facial-recognition",
Clip = "clip"
}
export enum TimeBucketSize {
Day = "DAY",
Month = "MONTH"

View file

@ -1,8 +1,7 @@
import { ApiProperty } from '@nestjs/swagger';
import { Type } from 'class-transformer';
import { IsEnum, IsNotEmpty, IsNumber, IsString, Max, Min } from 'class-validator';
import { CLIPMode, ModelType } from 'src/interfaces/machine-learning.interface';
import { Optional, ValidateBoolean } from 'src/validation';
import { IsNotEmpty, IsNumber, IsString, Max, Min } from 'class-validator';
import { ValidateBoolean } from 'src/validation';
export class TaskConfig {
@ValidateBoolean()
@ -13,19 +12,9 @@ export class ModelConfig extends TaskConfig {
@IsString()
@IsNotEmpty()
modelName!: string;
@IsEnum(ModelType)
@Optional()
@ApiProperty({ enumName: 'ModelType', enum: ModelType })
modelType?: ModelType;
}
export class CLIPConfig extends ModelConfig {
@IsEnum(CLIPMode)
@Optional()
@ApiProperty({ enumName: 'CLIPMode', enum: CLIPMode })
mode?: CLIPMode;
}
export class CLIPConfig extends ModelConfig {}
export class DuplicateDetectionConfig extends TaskConfig {
@IsNumber()
@ -36,7 +25,7 @@ export class DuplicateDetectionConfig extends TaskConfig {
maxDistance!: number;
}
export class RecognitionConfig extends ModelConfig {
export class FacialRecognitionConfig extends ModelConfig {
@IsNumber()
@Min(0)
@Max(1)

View file

@ -30,7 +30,7 @@ import {
TranscodePolicy,
VideoCodec,
} from 'src/config';
import { CLIPConfig, DuplicateDetectionConfig, RecognitionConfig } from 'src/dtos/model-config.dto';
import { CLIPConfig, DuplicateDetectionConfig, FacialRecognitionConfig } from 'src/dtos/model-config.dto';
import { ConcurrentQueueName, QueueName } from 'src/interfaces/job.interface';
import { ValidateBoolean, validateCronExpression } from 'src/validation';
@ -270,10 +270,10 @@ class SystemConfigMachineLearningDto {
@IsObject()
duplicateDetection!: DuplicateDetectionConfig;
@Type(() => RecognitionConfig)
@Type(() => FacialRecognitionConfig)
@ValidateNested()
@IsObject()
facialRecognition!: RecognitionConfig;
facialRecognition!: FacialRecognitionConfig;
}
enum MapTheme {

View file

@ -1,15 +1,5 @@
import { CLIPConfig, RecognitionConfig } from 'src/dtos/model-config.dto';
export const IMachineLearningRepository = 'IMachineLearningRepository';
export interface VisionModelInput {
imagePath: string;
}
export interface TextModelInput {
text: string;
}
export interface BoundingBox {
x1: number;
y1: number;
@ -17,26 +7,51 @@ export interface BoundingBox {
y2: number;
}
export interface DetectFaceResult {
imageWidth: number;
imageHeight: number;
boundingBox: BoundingBox;
score: number;
embedding: number[];
export enum ModelTask {
FACIAL_RECOGNITION = 'facial-recognition',
SEARCH = 'clip',
}
export enum ModelType {
FACIAL_RECOGNITION = 'facial-recognition',
CLIP = 'clip',
DETECTION = 'detection',
PIPELINE = 'pipeline',
RECOGNITION = 'recognition',
TEXTUAL = 'textual',
VISUAL = 'visual',
}
export enum CLIPMode {
VISION = 'vision',
TEXT = 'text',
export type ModelPayload = { imagePath: string } | { text: string };
type ModelOptions = { modelName: string };
export type FaceDetectionOptions = ModelOptions & { minScore: number };
type VisualResponse = { imageHeight: number; imageWidth: number };
export type ClipVisualRequest = { [ModelTask.SEARCH]: { [ModelType.VISUAL]: ModelOptions } };
export type ClipVisualResponse = { [ModelTask.SEARCH]: number[] } & VisualResponse;
export type ClipTextualRequest = { [ModelTask.SEARCH]: { [ModelType.TEXTUAL]: ModelOptions } };
export type ClipTextualResponse = { [ModelTask.SEARCH]: number[] };
export type FacialRecognitionRequest = {
[ModelTask.FACIAL_RECOGNITION]: {
[ModelType.DETECTION]: FaceDetectionOptions;
[ModelType.RECOGNITION]: ModelOptions;
};
};
export interface Face {
boundingBox: BoundingBox;
embedding: number[];
score: number;
}
export type FacialRecognitionResponse = { [ModelTask.FACIAL_RECOGNITION]: Face[] } & VisualResponse;
export type DetectedFaces = { faces: Face[] } & VisualResponse;
export type MachineLearningRequest = ClipVisualRequest | ClipTextualRequest | FacialRecognitionRequest;
export interface IMachineLearningRepository {
encodeImage(url: string, input: VisionModelInput, config: CLIPConfig): Promise<number[]>;
encodeText(url: string, input: TextModelInput, config: CLIPConfig): Promise<number[]>;
detectFaces(url: string, input: VisionModelInput, config: RecognitionConfig): Promise<DetectFaceResult[]>;
encodeImage(url: string, imagePath: string, config: ModelOptions): Promise<number[]>;
encodeText(url: string, text: string, config: ModelOptions): Promise<number[]>;
detectFaces(url: string, imagePath: string, config: FaceDetectionOptions): Promise<DetectedFaces>;
}

View file

@ -37,8 +37,6 @@ export interface SearchExploreItem<T> {
items: SearchExploreItemSet<T>;
}
export type Embedding = number[];
export interface SearchAssetIDOptions {
checksum?: Buffer;
deviceAssetId?: string;
@ -106,7 +104,7 @@ export interface SearchExifOptions {
}
export interface SearchEmbeddingOptions {
embedding: Embedding;
embedding: number[];
userIds: string[];
}
@ -154,7 +152,7 @@ export interface FaceEmbeddingSearch extends SearchEmbeddingOptions {
export interface AssetDuplicateSearch {
assetId: string;
embedding: Embedding;
embedding: number[];
maxDistance?: number;
type: AssetType;
userIds: string[];

View file

@ -1,13 +1,16 @@
import { Injectable } from '@nestjs/common';
import { readFile } from 'node:fs/promises';
import { CLIPConfig, ModelConfig, RecognitionConfig } from 'src/dtos/model-config.dto';
import { CLIPConfig } from 'src/dtos/model-config.dto';
import {
CLIPMode,
DetectFaceResult,
ClipTextualResponse,
ClipVisualResponse,
FaceDetectionOptions,
FacialRecognitionResponse,
IMachineLearningRepository,
MachineLearningRequest,
ModelPayload,
ModelTask,
ModelType,
TextModelInput,
VisionModelInput,
} from 'src/interfaces/machine-learning.interface';
import { Instrumentation } from 'src/utils/instrumentation';
@ -16,8 +19,8 @@ const errorPrefix = 'Machine learning request';
@Instrumentation()
@Injectable()
export class MachineLearningRepository implements IMachineLearningRepository {
private async predict<T>(url: string, input: TextModelInput | VisionModelInput, config: ModelConfig): Promise<T> {
const formData = await this.getFormData(input, config);
private async predict<T>(url: string, payload: ModelPayload, config: MachineLearningRequest): Promise<T> {
const formData = await this.getFormData(payload, config);
const res = await fetch(new URL('/predict', url), { method: 'POST', body: formData }).catch(
(error: Error | any) => {
@ -26,50 +29,46 @@ export class MachineLearningRepository implements IMachineLearningRepository {
);
if (res.status >= 400) {
const modelType = config.modelType ? ` for ${config.modelType.replace('-', ' ')}` : '';
throw new Error(`${errorPrefix}${modelType} failed with status ${res.status}: ${res.statusText}`);
throw new Error(`${errorPrefix} '${JSON.stringify(config)}' failed with status ${res.status}: ${res.statusText}`);
}
return res.json();
}
detectFaces(url: string, input: VisionModelInput, config: RecognitionConfig): Promise<DetectFaceResult[]> {
return this.predict<DetectFaceResult[]>(url, input, { ...config, modelType: ModelType.FACIAL_RECOGNITION });
async detectFaces(url: string, imagePath: string, { modelName, minScore }: FaceDetectionOptions) {
const request = {
[ModelTask.FACIAL_RECOGNITION]: {
[ModelType.DETECTION]: { modelName, minScore },
[ModelType.RECOGNITION]: { modelName },
},
};
const response = await this.predict<FacialRecognitionResponse>(url, { imagePath }, request);
return {
imageHeight: response.imageHeight,
imageWidth: response.imageWidth,
faces: response[ModelTask.FACIAL_RECOGNITION],
};
}
encodeImage(url: string, input: VisionModelInput, config: CLIPConfig): Promise<number[]> {
return this.predict<number[]>(url, input, {
...config,
modelType: ModelType.CLIP,
mode: CLIPMode.VISION,
} as CLIPConfig);
async encodeImage(url: string, imagePath: string, { modelName }: CLIPConfig) {
const request = { [ModelTask.SEARCH]: { [ModelType.VISUAL]: { modelName } } };
const response = await this.predict<ClipVisualResponse>(url, { imagePath }, request);
return response[ModelTask.SEARCH];
}
encodeText(url: string, input: TextModelInput, config: CLIPConfig): Promise<number[]> {
return this.predict<number[]>(url, input, {
...config,
modelType: ModelType.CLIP,
mode: CLIPMode.TEXT,
} as CLIPConfig);
async encodeText(url: string, text: string, { modelName }: CLIPConfig) {
const request = { [ModelTask.SEARCH]: { [ModelType.TEXTUAL]: { modelName } } };
const response = await this.predict<ClipTextualResponse>(url, { text }, request);
return response[ModelTask.SEARCH];
}
private async getFormData(input: TextModelInput | VisionModelInput, config: ModelConfig): Promise<FormData> {
private async getFormData(payload: ModelPayload, config: MachineLearningRequest): Promise<FormData> {
const formData = new FormData();
const { enabled, modelName, modelType, ...options } = config;
if (!enabled) {
throw new Error(`${modelType} is not enabled`);
}
formData.append('entries', JSON.stringify(config));
formData.append('modelName', modelName);
if (modelType) {
formData.append('modelType', modelType);
}
if (options) {
formData.append('options', JSON.stringify(options));
}
if ('imagePath' in input) {
formData.append('image', new Blob([await readFile(input.imagePath)]));
} else if ('text' in input) {
formData.append('text', input.text);
if ('imagePath' in payload) {
formData.append('image', new Blob([await readFile(payload.imagePath)]));
} else if ('text' in payload) {
formData.append('text', payload.text);
} else {
throw new Error('Invalid input');
}

View file

@ -7,7 +7,7 @@ import { IAssetRepository, WithoutProperty } from 'src/interfaces/asset.interfac
import { ICryptoRepository } from 'src/interfaces/crypto.interface';
import { IJobRepository, JobName, JobStatus } from 'src/interfaces/job.interface';
import { ILoggerRepository } from 'src/interfaces/logger.interface';
import { IMachineLearningRepository } from 'src/interfaces/machine-learning.interface';
import { DetectedFaces, IMachineLearningRepository } from 'src/interfaces/machine-learning.interface';
import { IMediaRepository } from 'src/interfaces/media.interface';
import { IMoveRepository } from 'src/interfaces/move.interface';
import { IPersonRepository } from 'src/interfaces/person.interface';
@ -46,19 +46,21 @@ const responseDto: PersonResponseDto = {
const statistics = { assets: 3 };
const detectFaceMock = {
assetId: 'asset-1',
personId: 'person-1',
boundingBox: {
x1: 100,
y1: 100,
x2: 200,
y2: 200,
},
const detectFaceMock: DetectedFaces = {
faces: [
{
boundingBox: {
x1: 100,
y1: 100,
x2: 200,
y2: 200,
},
embedding: [1, 2, 3, 4],
score: 0.2,
},
],
imageHeight: 500,
imageWidth: 400,
embedding: [1, 2, 3, 4],
score: 0.2,
};
describe(PersonService.name, () => {
@ -642,21 +644,13 @@ describe(PersonService.name, () => {
it('should handle no results', async () => {
const start = Date.now();
machineLearningMock.detectFaces.mockResolvedValue([]);
machineLearningMock.detectFaces.mockResolvedValue({ imageHeight: 500, imageWidth: 400, faces: [] });
assetMock.getByIds.mockResolvedValue([assetStub.image]);
await sut.handleDetectFaces({ id: assetStub.image.id });
expect(machineLearningMock.detectFaces).toHaveBeenCalledWith(
'http://immich-machine-learning:3003',
{
imagePath: assetStub.image.previewPath,
},
{
enabled: true,
maxDistance: 0.5,
minScore: 0.7,
minFaces: 3,
modelName: 'buffalo_l',
},
assetStub.image.previewPath,
expect.objectContaining({ minScore: 0.7, modelName: 'buffalo_l' }),
);
expect(personMock.createFaces).not.toHaveBeenCalled();
expect(jobMock.queue).not.toHaveBeenCalled();
@ -671,7 +665,7 @@ describe(PersonService.name, () => {
it('should create a face with no person and queue recognition job', async () => {
personMock.createFaces.mockResolvedValue([faceStub.face1.id]);
machineLearningMock.detectFaces.mockResolvedValue([detectFaceMock]);
machineLearningMock.detectFaces.mockResolvedValue(detectFaceMock);
searchMock.searchFaces.mockResolvedValue([{ face: faceStub.face1, distance: 0.7 }]);
assetMock.getByIds.mockResolvedValue([assetStub.image]);
const face = {

View file

@ -333,26 +333,28 @@ export class PersonService {
return JobStatus.SKIPPED;
}
const faces = await this.machineLearningRepository.detectFaces(
if (!asset.isVisible) {
return JobStatus.SKIPPED;
}
const { imageHeight, imageWidth, faces } = await this.machineLearningRepository.detectFaces(
machineLearning.url,
{ imagePath: asset.previewPath },
asset.previewPath,
machineLearning.facialRecognition,
);
this.logger.debug(`${faces.length} faces detected in ${asset.previewPath}`);
this.logger.verbose(faces.map((face) => ({ ...face, embedding: `vector(${face.embedding.length})` })));
if (faces.length > 0) {
await this.jobRepository.queue({ name: JobName.QUEUE_FACIAL_RECOGNITION, data: { force: false } });
const mappedFaces = faces.map((face) => ({
assetId: asset.id,
embedding: face.embedding,
imageHeight: face.imageHeight,
imageWidth: face.imageWidth,
imageHeight,
imageWidth,
boundingBoxX1: face.boundingBox.x1,
boundingBoxX2: face.boundingBox.x2,
boundingBoxY1: face.boundingBox.y1,
boundingBoxX2: face.boundingBox.x2,
boundingBoxY2: face.boundingBox.y2,
}));

View file

@ -102,12 +102,7 @@ export class SearchService {
const userIds = await this.getUserIdsToSearch(auth);
const embedding = await this.machineLearning.encodeText(
machineLearning.url,
{ text: dto.query },
machineLearning.clip,
);
const embedding = await this.machineLearning.encodeText(machineLearning.url, dto.query, machineLearning.clip);
const page = dto.page ?? 1;
const size = dto.size || 100;
const { hasNextPage, items } = await this.searchRepository.searchSmart(

View file

@ -108,8 +108,8 @@ describe(SmartInfoService.name, () => {
expect(machineMock.encodeImage).toHaveBeenCalledWith(
'http://immich-machine-learning:3003',
{ imagePath: assetStub.image.previewPath },
{ enabled: true, modelName: 'ViT-B-32__openai' },
assetStub.image.previewPath,
expect.objectContaining({ modelName: 'ViT-B-32__openai' }),
);
expect(searchMock.upsert).toHaveBeenCalledWith(assetStub.image.id, [0.01, 0.02, 0.03]);
});

View file

@ -93,9 +93,9 @@ export class SmartInfoService {
return JobStatus.FAILED;
}
const clipEmbedding = await this.machineLearning.encodeImage(
const embedding = await this.machineLearning.encodeImage(
machineLearning.url,
{ imagePath: asset.previewPath },
asset.previewPath,
machineLearning.clip,
);
@ -104,7 +104,7 @@ export class SmartInfoService {
await this.databaseRepository.wait(DatabaseLock.CLIPDimSize);
}
await this.repository.upsert(asset.id, clipEmbedding);
await this.repository.upsert(asset.id, embedding);
return JobStatus.SUCCESS;
}