mirror of
https://github.com/immich-app/immich.git
synced 2025-01-22 11:42:46 +01:00
2b1b43a7e4
* modularize model classes * various fixes * expose port * change response * round coordinates * simplify preload * update server * simplify interface simplify * update tests * composable endpoint * cleanup fixes remove unnecessary interface support text input, cleanup * ew camelcase * update server server fixes fix typing * ml fixes update locustfile fixes * cleaner response * better repo response * update tests formatting and typing rename * undo compose change * linting fix type actually fix typing * stricter typing fix detection-only response no need for defaultdict * update spec file update api linting * update e2e * unnecessary dimension * remove commented code * remove duplicate code * remove unused imports * add batch dim
98 lines
3.5 KiB
Python
98 lines
3.5 KiB
Python
import json
|
|
from abc import abstractmethod
|
|
from functools import cached_property
|
|
from pathlib import Path
|
|
from typing import Any
|
|
|
|
import numpy as np
|
|
from numpy.typing import NDArray
|
|
from tokenizers import Encoding, Tokenizer
|
|
|
|
from app.config import log
|
|
from app.models.base import InferenceModel
|
|
from app.schemas import ModelSession, ModelTask, ModelType
|
|
|
|
|
|
class BaseCLIPTextualEncoder(InferenceModel):
|
|
depends = []
|
|
identity = (ModelType.TEXTUAL, ModelTask.SEARCH)
|
|
|
|
def _predict(self, inputs: str, **kwargs: Any) -> NDArray[np.float32]:
|
|
res: NDArray[np.float32] = self.session.run(None, self.tokenize(inputs))[0][0]
|
|
return res
|
|
|
|
def _load(self) -> ModelSession:
|
|
log.debug(f"Loading tokenizer for CLIP model '{self.model_name}'")
|
|
self.tokenizer = self._load_tokenizer()
|
|
log.debug(f"Loaded tokenizer for CLIP model '{self.model_name}'")
|
|
|
|
return super()._load()
|
|
|
|
@abstractmethod
|
|
def _load_tokenizer(self) -> Tokenizer:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
|
|
pass
|
|
|
|
@property
|
|
def model_cfg_path(self) -> Path:
|
|
return self.cache_dir / "config.json"
|
|
|
|
@property
|
|
def tokenizer_file_path(self) -> Path:
|
|
return self.model_dir / "tokenizer.json"
|
|
|
|
@property
|
|
def tokenizer_cfg_path(self) -> Path:
|
|
return self.model_dir / "tokenizer_config.json"
|
|
|
|
@cached_property
|
|
def model_cfg(self) -> dict[str, Any]:
|
|
log.debug(f"Loading model config for CLIP model '{self.model_name}'")
|
|
model_cfg: dict[str, Any] = json.load(self.model_cfg_path.open())
|
|
log.debug(f"Loaded model config for CLIP model '{self.model_name}'")
|
|
return model_cfg
|
|
|
|
@cached_property
|
|
def tokenizer_file(self) -> dict[str, Any]:
|
|
log.debug(f"Loading tokenizer file for CLIP model '{self.model_name}'")
|
|
tokenizer_file: dict[str, Any] = json.load(self.tokenizer_file_path.open())
|
|
log.debug(f"Loaded tokenizer file for CLIP model '{self.model_name}'")
|
|
return tokenizer_file
|
|
|
|
@cached_property
|
|
def tokenizer_cfg(self) -> dict[str, Any]:
|
|
log.debug(f"Loading tokenizer config for CLIP model '{self.model_name}'")
|
|
tokenizer_cfg: dict[str, Any] = json.load(self.tokenizer_cfg_path.open())
|
|
log.debug(f"Loaded tokenizer config for CLIP model '{self.model_name}'")
|
|
return tokenizer_cfg
|
|
|
|
|
|
class OpenClipTextualEncoder(BaseCLIPTextualEncoder):
|
|
def _load_tokenizer(self) -> Tokenizer:
|
|
text_cfg: dict[str, Any] = self.model_cfg["text_cfg"]
|
|
context_length: int = text_cfg.get("context_length", 77)
|
|
pad_token: str = self.tokenizer_cfg["pad_token"]
|
|
|
|
tokenizer: Tokenizer = Tokenizer.from_file(self.tokenizer_file_path.as_posix())
|
|
|
|
pad_id: int = tokenizer.token_to_id(pad_token)
|
|
tokenizer.enable_padding(length=context_length, pad_token=pad_token, pad_id=pad_id)
|
|
tokenizer.enable_truncation(max_length=context_length)
|
|
|
|
return tokenizer
|
|
|
|
def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
|
|
tokens: Encoding = self.tokenizer.encode(text)
|
|
return {"text": np.array([tokens.ids], dtype=np.int32)}
|
|
|
|
|
|
class MClipTextualEncoder(OpenClipTextualEncoder):
|
|
def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
|
|
tokens: Encoding = self.tokenizer.encode(text)
|
|
return {
|
|
"input_ids": np.array([tokens.ids], dtype=np.int32),
|
|
"attention_mask": np.array([tokens.attention_mask], dtype=np.int32),
|
|
}
|