1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-07 12:26:47 +01:00
immich/machine-learning/app/models/clip/visual.py
Mert 2b1b43a7e4
feat(ml): composable ml (#9973)
* modularize model classes

* various fixes

* expose port

* change response

* round coordinates

* simplify preload

* update server

* simplify interface

simplify

* update tests

* composable endpoint

* cleanup

fixes

remove unnecessary interface

support text input, cleanup

* ew camelcase

* update server

server fixes

fix typing

* ml fixes

update locustfile

fixes

* cleaner response

* better repo response

* update tests

formatting and typing

rename

* undo compose change

* linting

fix type

actually fix typing

* stricter typing

fix detection-only response

no need for defaultdict

* update spec file

update api

linting

* update e2e

* unnecessary dimension

* remove commented code

* remove duplicate code

* remove unused imports

* add batch dim
2024-06-07 03:09:47 +00:00

69 lines
2.6 KiB
Python

import json
from abc import abstractmethod
from functools import cached_property
from pathlib import Path
from typing import Any
import numpy as np
from numpy.typing import NDArray
from PIL import Image
from app.config import log
from app.models.base import InferenceModel
from app.models.transforms import crop_pil, decode_pil, get_pil_resampling, normalize, resize_pil, to_numpy
from app.schemas import ModelSession, ModelTask, ModelType
class BaseCLIPVisualEncoder(InferenceModel):
depends = []
identity = (ModelType.VISUAL, ModelTask.SEARCH)
def _predict(self, inputs: Image.Image | bytes, **kwargs: Any) -> NDArray[np.float32]:
image = decode_pil(inputs)
res: NDArray[np.float32] = self.session.run(None, self.transform(image))[0][0]
return res
@abstractmethod
def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]:
pass
@property
def model_cfg_path(self) -> Path:
return self.cache_dir / "config.json"
@property
def preprocess_cfg_path(self) -> Path:
return self.model_dir / "preprocess_cfg.json"
@cached_property
def model_cfg(self) -> dict[str, Any]:
log.debug(f"Loading model config for CLIP model '{self.model_name}'")
model_cfg: dict[str, Any] = json.load(self.model_cfg_path.open())
log.debug(f"Loaded model config for CLIP model '{self.model_name}'")
return model_cfg
@cached_property
def preprocess_cfg(self) -> dict[str, Any]:
log.debug(f"Loading visual preprocessing config for CLIP model '{self.model_name}'")
preprocess_cfg: dict[str, Any] = json.load(self.preprocess_cfg_path.open())
log.debug(f"Loaded visual preprocessing config for CLIP model '{self.model_name}'")
return preprocess_cfg
class OpenClipVisualEncoder(BaseCLIPVisualEncoder):
def _load(self) -> ModelSession:
size: list[int] | int = self.preprocess_cfg["size"]
self.size = size[0] if isinstance(size, list) else size
self.resampling = get_pil_resampling(self.preprocess_cfg["interpolation"])
self.mean = np.array(self.preprocess_cfg["mean"], dtype=np.float32)
self.std = np.array(self.preprocess_cfg["std"], dtype=np.float32)
return super()._load()
def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]:
image = resize_pil(image, self.size)
image = crop_pil(image, self.size)
image_np = to_numpy(image)
image_np = normalize(image_np, self.mean, self.std)
return {"image": np.expand_dims(image_np.transpose(2, 0, 1), 0)}