1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-22 11:42:46 +01:00
immich/machine-learning/app/main.py

116 lines
3.6 KiB
Python
Raw Normal View History

import asyncio
import threading
from concurrent.futures import ThreadPoolExecutor
from typing import Any
from zipfile import BadZipFile
import orjson
from fastapi import FastAPI, Form, HTTPException, UploadFile
from fastapi.responses import ORJSONResponse
from onnxruntime.capi.onnxruntime_pybind11_state import InvalidProtobuf, NoSuchFile # type: ignore
from starlette.formparsers import MultiPartParser
from app.models.base import InferenceModel
from .config import log, settings
from .models.cache import ModelCache
from .schemas import (
MessageResponse,
ModelType,
TextResponse,
)
MultiPartParser.max_file_size = 2**24 # spools to disk if payload is 16 MiB or larger
2023-05-17 19:07:17 +02:00
app = FastAPI()
2023-04-26 12:39:24 +02:00
def init_state() -> None:
app.state.model_cache = ModelCache(ttl=settings.model_ttl, revalidate=settings.model_ttl > 0)
log.info(
(
"Created in-memory cache with unloading "
f"{f'after {settings.model_ttl}s of inactivity' if settings.model_ttl > 0 else 'disabled'}."
)
)
# asyncio is a huge bottleneck for performance, so we use a thread pool to run blocking code
app.state.thread_pool = ThreadPoolExecutor(settings.request_threads) if settings.request_threads > 0 else None
app.state.locks = {model_type: threading.Lock() for model_type in ModelType}
log.info(f"Initialized request thread pool with {settings.request_threads} threads.")
@app.on_event("startup")
async def startup_event() -> None:
init_state()
@app.get("/", response_model=MessageResponse)
async def root() -> dict[str, str]:
2023-04-26 12:39:24 +02:00
return {"message": "Immich ML"}
@app.get("/ping", response_model=TextResponse)
def ping() -> str:
return "pong"
@app.post("/predict")
async def predict(
model_name: str = Form(alias="modelName"),
model_type: ModelType = Form(alias="modelType"),
options: str = Form(default="{}"),
text: str | None = Form(default=None),
image: UploadFile | None = None,
) -> Any:
if image is not None:
inputs: str | bytes = await image.read()
elif text is not None:
inputs = text
else:
raise HTTPException(400, "Either image or text must be provided")
try:
kwargs = orjson.loads(options)
except orjson.JSONDecodeError:
raise HTTPException(400, f"Invalid options JSON: {options}")
model = await load(await app.state.model_cache.get(model_name, model_type, **kwargs))
model.configure(**kwargs)
outputs = await run(model, inputs)
return ORJSONResponse(outputs)
async def run(model: InferenceModel, inputs: Any) -> Any:
if app.state.thread_pool is None:
return model.predict(inputs)
return await asyncio.get_running_loop().run_in_executor(app.state.thread_pool, model.predict, inputs)
async def load(model: InferenceModel) -> InferenceModel:
if model.loaded:
return model
def _load() -> None:
with app.state.locks[model.model_type]:
model.load()
loop = asyncio.get_running_loop()
try:
if app.state.thread_pool is None:
model.load()
else:
await loop.run_in_executor(app.state.thread_pool, _load)
return model
except (OSError, InvalidProtobuf, BadZipFile, NoSuchFile):
log.warn(
(
f"Failed to load {model.model_type.replace('_', ' ')} model '{model.model_name}'."
"Clearing cache and retrying."
)
)
model.clear_cache()
if app.state.thread_pool is None:
model.load()
else:
await loop.run_in_executor(app.state.thread_pool, _load)
return model