1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-16 16:56:46 +01:00
immich/machine-learning/app/main.py

81 lines
2.2 KiB
Python
Raw Normal View History

import asyncio
2023-05-17 19:07:17 +02:00
import os
from concurrent.futures import ThreadPoolExecutor
from typing import Any
import orjson
import uvicorn
from fastapi import FastAPI, Form, HTTPException, UploadFile
from fastapi.responses import ORJSONResponse
from starlette.formparsers import MultiPartParser
from app.models.base import InferenceModel
from .config import settings
from .models.cache import ModelCache
from .schemas import (
MessageResponse,
ModelType,
TextResponse,
)
MultiPartParser.max_file_size = 2**24 # spools to disk if payload is 16 MiB or larger
2023-05-17 19:07:17 +02:00
app = FastAPI()
2023-04-26 12:39:24 +02:00
def init_state() -> None:
app.state.model_cache = ModelCache(ttl=settings.model_ttl, revalidate=settings.model_ttl > 0)
# asyncio is a huge bottleneck for performance, so we use a thread pool to run blocking code
app.state.thread_pool = ThreadPoolExecutor(settings.request_threads)
@app.on_event("startup")
async def startup_event() -> None:
init_state()
@app.get("/", response_model=MessageResponse)
async def root() -> dict[str, str]:
2023-04-26 12:39:24 +02:00
return {"message": "Immich ML"}
@app.get("/ping", response_model=TextResponse)
def ping() -> str:
return "pong"
@app.post("/predict")
async def predict(
model_name: str = Form(alias="modelName"),
model_type: ModelType = Form(alias="modelType"),
options: str = Form(default="{}"),
text: str | None = Form(default=None),
image: UploadFile | None = None,
) -> Any:
if image is not None:
inputs: str | bytes = await image.read()
elif text is not None:
inputs = text
else:
raise HTTPException(400, "Either image or text must be provided")
model: InferenceModel = await app.state.model_cache.get(model_name, model_type, **orjson.loads(options))
outputs = await run(model, inputs)
return ORJSONResponse(outputs)
async def run(model: InferenceModel, inputs: Any) -> Any:
return await asyncio.get_running_loop().run_in_executor(app.state.thread_pool, model.predict, inputs)
if __name__ == "__main__":
is_dev = os.getenv("NODE_ENV") == "development"
uvicorn.run(
"app.main:app",
host=settings.host,
port=settings.port,
reload=is_dev,
workers=settings.workers,
)