1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2024-12-28 22:51:59 +00:00

feat(ml) backend takes image over HTTP (#2783)

* using pydantic BaseSetting

* ML API takes image file as input

* keeping image in memory

* reducing duplicate code

* using bytes instead of UploadFile & other small code improvements

* removed form-multipart, using HTTP body

* format code

---------

Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
This commit is contained in:
Zeeshan Khan 2023-06-17 22:49:19 -05:00 committed by GitHub
parent 3e804f16df
commit 34201be74c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 116 additions and 80 deletions

View file

@ -36,7 +36,6 @@ services:
- 3003:3003
volumes:
- ../machine-learning/app:/usr/src/app
- ${UPLOAD_LOCATION}:/usr/src/app/upload
- model-cache:/cache
env_file:
- .env

View file

@ -33,7 +33,6 @@ services:
container_name: immich_machine_learning
image: ghcr.io/immich-app/immich-machine-learning:${IMMICH_VERSION:-release}
volumes:
- ${UPLOAD_LOCATION}:/usr/src/app/upload
- model-cache:/cache
env_file:
- .env

View file

@ -0,0 +1,22 @@
from pydantic import BaseSettings
class Settings(BaseSettings):
cache_folder: str = "/cache"
classification_model: str = "microsoft/resnet-50"
clip_image_model: str = "clip-ViT-B-32"
clip_text_model: str = "clip-ViT-B-32"
facial_recognition_model: str = "buffalo_l"
min_tag_score: float = 0.9
eager_startup: bool = True
model_ttl: int = 300
host: str = "0.0.0.0"
port: int = 3003
workers: int = 1
min_face_score: float = 0.7
class Config(BaseSettings.Config):
env_prefix = 'MACHINE_LEARNING_'
case_sensitive = False
settings = Settings()

View file

@ -1,4 +1,5 @@
import os
import io
from typing import Any
from cache import ModelCache
@ -9,52 +10,44 @@ from schemas import (
MessageResponse,
TextModelRequest,
TextResponse,
VisionModelRequest,
)
import uvicorn
from PIL import Image
from fastapi import FastAPI, HTTPException
from fastapi import FastAPI, HTTPException, Depends, Body
from models import get_model, run_classification, run_facial_recognition
classification_model = os.getenv(
"MACHINE_LEARNING_CLASSIFICATION_MODEL", "microsoft/resnet-50"
)
clip_image_model = os.getenv("MACHINE_LEARNING_CLIP_IMAGE_MODEL", "clip-ViT-B-32")
clip_text_model = os.getenv("MACHINE_LEARNING_CLIP_TEXT_MODEL", "clip-ViT-B-32")
facial_recognition_model = os.getenv(
"MACHINE_LEARNING_FACIAL_RECOGNITION_MODEL", "buffalo_l"
)
min_tag_score = float(os.getenv("MACHINE_LEARNING_MIN_TAG_SCORE", 0.9))
eager_startup = (
os.getenv("MACHINE_LEARNING_EAGER_STARTUP", "true") == "true"
) # loads all models at startup
model_ttl = int(os.getenv("MACHINE_LEARNING_MODEL_TTL", 300))
from config import settings
_model_cache = None
app = FastAPI()
@app.on_event("startup")
async def startup_event() -> None:
global _model_cache
_model_cache = ModelCache(ttl=model_ttl, revalidate=True)
_model_cache = ModelCache(ttl=settings.model_ttl, revalidate=True)
models = [
(classification_model, "image-classification"),
(clip_image_model, "clip"),
(clip_text_model, "clip"),
(facial_recognition_model, "facial-recognition"),
(settings.classification_model, "image-classification"),
(settings.clip_image_model, "clip"),
(settings.clip_text_model, "clip"),
(settings.facial_recognition_model, "facial-recognition"),
]
# Get all models
for model_name, model_type in models:
if eager_startup:
if settings.eager_startup:
await _model_cache.get_cached_model(model_name, model_type)
else:
get_model(model_name, model_type)
def dep_model_cache():
if _model_cache is None:
raise HTTPException(status_code=500, detail="Unable to load model.")
def dep_input_image(image: bytes = Body(...)) -> Image:
return Image.open(io.BytesIO(image))
@app.get("/", response_model=MessageResponse)
async def root() -> dict[str, str]:
return {"message": "Immich ML"}
@ -65,29 +58,36 @@ def ping() -> str:
return "pong"
@app.post("/image-classifier/tag-image", response_model=TagResponse, status_code=200)
async def image_classification(payload: VisionModelRequest) -> list[str]:
if _model_cache is None:
raise HTTPException(status_code=500, detail="Unable to load model.")
model = await _model_cache.get_cached_model(
classification_model, "image-classification"
)
labels = run_classification(model, payload.image_path, min_tag_score)
return labels
@app.post(
"/image-classifier/tag-image",
response_model=TagResponse,
status_code=200,
dependencies=[Depends(dep_model_cache)],
)
async def image_classification(
image: Image = Depends(dep_input_image)
) -> list[str]:
try:
model = await _model_cache.get_cached_model(
settings.classification_model, "image-classification"
)
labels = run_classification(model, image, settings.min_tag_score)
except Exception as ex:
raise HTTPException(status_code=500, detail=str(ex))
else:
return labels
@app.post(
"/sentence-transformer/encode-image",
response_model=EmbeddingResponse,
status_code=200,
dependencies=[Depends(dep_model_cache)],
)
async def clip_encode_image(payload: VisionModelRequest) -> list[float]:
if _model_cache is None:
raise HTTPException(status_code=500, detail="Unable to load model.")
model = await _model_cache.get_cached_model(clip_image_model, "clip")
image = Image.open(payload.image_path)
async def clip_encode_image(
image: Image = Depends(dep_input_image)
) -> list[float]:
model = await _model_cache.get_cached_model(settings.clip_image_model, "clip")
embedding = model.encode(image).tolist()
return embedding
@ -96,33 +96,38 @@ async def clip_encode_image(payload: VisionModelRequest) -> list[float]:
"/sentence-transformer/encode-text",
response_model=EmbeddingResponse,
status_code=200,
dependencies=[Depends(dep_model_cache)],
)
async def clip_encode_text(payload: TextModelRequest) -> list[float]:
if _model_cache is None:
raise HTTPException(status_code=500, detail="Unable to load model.")
model = await _model_cache.get_cached_model(clip_text_model, "clip")
async def clip_encode_text(
payload: TextModelRequest
) -> list[float]:
model = await _model_cache.get_cached_model(settings.clip_text_model, "clip")
embedding = model.encode(payload.text).tolist()
return embedding
@app.post(
"/facial-recognition/detect-faces", response_model=FaceResponse, status_code=200
"/facial-recognition/detect-faces",
response_model=FaceResponse,
status_code=200,
dependencies=[Depends(dep_model_cache)],
)
async def facial_recognition(payload: VisionModelRequest) -> list[dict[str, Any]]:
if _model_cache is None:
raise HTTPException(status_code=500, detail="Unable to load model.")
async def facial_recognition(
image: bytes = Body(...),
) -> list[dict[str, Any]]:
model = await _model_cache.get_cached_model(
facial_recognition_model, "facial-recognition"
settings.facial_recognition_model, "facial-recognition"
)
faces = run_facial_recognition(model, payload.image_path)
faces = run_facial_recognition(model, image)
return faces
if __name__ == "__main__":
host = os.getenv("MACHINE_LEARNING_HOST", "0.0.0.0")
port = int(os.getenv("MACHINE_LEARNING_PORT", 3003))
is_dev = os.getenv("NODE_ENV") == "development"
uvicorn.run("main:app", host=host, port=port, reload=is_dev, workers=1)
uvicorn.run(
"main:app",
host=settings.host,
port=settings.port,
reload=is_dev,
workers=settings.workers,
)

View file

@ -1,14 +1,15 @@
import torch
from insightface.app import FaceAnalysis
from pathlib import Path
import os
from transformers import pipeline, Pipeline
from sentence_transformers import SentenceTransformer
from typing import Any
from typing import Any, BinaryIO
import cv2 as cv
import numpy as np
from PIL import Image
from config import settings
cache_folder = os.getenv("MACHINE_LEARNING_CACHE_FOLDER", "/cache")
device = "cuda" if torch.cuda.is_available() else "cpu"
@ -49,9 +50,9 @@ def get_model(model_name: str, model_type: str, **model_kwargs):
def run_classification(
model: Pipeline, image_path: str, min_score: float | None = None
model: Pipeline, image: Image, min_score: float | None = None
):
predictions: list[dict[str, Any]] = model(image_path) # type: ignore
predictions: list[dict[str, Any]] = model(image) # type: ignore
result = {
tag
for pred in predictions
@ -63,9 +64,10 @@ def run_classification(
def run_facial_recognition(
model: FaceAnalysis, image_path: str
model: FaceAnalysis, image: bytes
) -> list[dict[str, Any]]:
img = cv.imread(image_path)
file_bytes = np.frombuffer(image, dtype=np.uint8)
img = cv.imdecode(file_bytes, cv.IMREAD_COLOR)
height, width, _ = img.shape
results = []
faces = model.get(img)
@ -101,7 +103,7 @@ def _load_facial_recognition(
if isinstance(cache_dir, Path):
cache_dir = cache_dir.as_posix()
if min_face_score is None:
min_face_score = float(os.getenv("MACHINE_LEARNING_MIN_FACE_SCORE", 0.7))
min_face_score = settings.min_face_score
model = FaceAnalysis(
name=model_name,
@ -114,4 +116,4 @@ def _load_facial_recognition(
def _get_cache_dir(model_name: str, model_type: str) -> Path:
return Path(cache_folder, device, model_type, model_name)
return Path(settings.cache_folder, device, model_type, model_name)

View file

@ -9,14 +9,6 @@ def to_lower_camel(string: str) -> str:
return "".join(tokens)
class VisionModelRequest(BaseModel):
image_path: str
class Config:
alias_generator = to_lower_camel
allow_population_by_field_name = True
class TextModelRequest(BaseModel):
text: str

View file

@ -1733,6 +1733,8 @@ files = [
{file = "scikit_image-0.21.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:c01e3ab0a1fabfd8ce30686d4401b7ed36e6126c9d4d05cb94abf6bdc46f7ac9"},
{file = "scikit_image-0.21.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8ef5d8d1099317b7b315b530348cbfa68ab8ce32459de3c074d204166951025c"},
{file = "scikit_image-0.21.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78b1e96c59cab640ca5c5b22c501524cfaf34cbe0cb51ba73bd9a9ede3fb6e1d"},
{file = "scikit_image-0.21.0-cp39-cp39-win_amd64.whl", hash = "sha256:9cffcddd2a5594c0a06de2ae3e1e25d662745a26f94fda31520593669677c010"},
{file = "scikit_image-0.21.0.tar.gz", hash = "sha256:b33e823c54e6f11873ea390ee49ef832b82b9f70752c8759efd09d5a4e3d87f0"},
]
[package.dependencies]
@ -2088,9 +2090,9 @@ opt-einsum = ["opt-einsum (>=3.3)"]
[[package]]
name = "torch"
version = "2.0.1+cpu"
description = ""
description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration"
optional = false
python-versions = "*"
python-versions = ">=3.8.0"
files = [
{file = "torch-2.0.1+cpu-cp310-cp310-linux_x86_64.whl", hash = "sha256:fec257249ba014c68629a1994b0c6e7356e20e1afc77a87b9941a40e5095285d"},
{file = "torch-2.0.1+cpu-cp310-cp310-win_amd64.whl", hash = "sha256:ca88b499973c4c027e32c4960bf20911d7e984bd0c55cda181dc643559f3d93f"},
@ -2102,6 +2104,16 @@ files = [
{file = "torch-2.0.1+cpu-cp39-cp39-win_amd64.whl", hash = "sha256:f263f8e908288427ae81441fef540377f61e339a27632b1bbe33cf78292fdaea"},
]
[package.dependencies]
filelock = "*"
jinja2 = "*"
networkx = "*"
sympy = "*"
typing-extensions = "*"
[package.extras]
opt-einsum = ["opt-einsum (>=3.3)"]
[package.source]
type = "legacy"
url = "https://download.pytorch.org/whl/cpu"

View file

@ -1,21 +1,26 @@
import { DetectFaceResult, IMachineLearningRepository, MachineLearningInput, MACHINE_LEARNING_URL } from '@app/domain';
import { Injectable } from '@nestjs/common';
import axios from 'axios';
import { createReadStream } from 'fs';
const client = axios.create({ baseURL: MACHINE_LEARNING_URL });
@Injectable()
export class MachineLearningRepository implements IMachineLearningRepository {
private post<T>(input: MachineLearningInput, endpoint: string): Promise<T> {
return client.post<T>(endpoint, createReadStream(input.imagePath)).then((res) => res.data);
}
classifyImage(input: MachineLearningInput): Promise<string[]> {
return client.post<string[]>('/image-classifier/tag-image', input).then((res) => res.data);
return this.post<string[]>(input, '/image-classifier/tag-image');
}
detectFaces(input: MachineLearningInput): Promise<DetectFaceResult[]> {
return client.post<DetectFaceResult[]>('/facial-recognition/detect-faces', input).then((res) => res.data);
return this.post<DetectFaceResult[]>(input, '/facial-recognition/detect-faces');
}
encodeImage(input: MachineLearningInput): Promise<number[]> {
return client.post<number[]>('/sentence-transformer/encode-image', input).then((res) => res.data);
return this.post<number[]>(input, '/sentence-transformer/encode-image');
}
encodeText(input: string): Promise<number[]> {