2024-01-22 00:22:39 +01:00
|
|
|
from enum import Enum
|
2024-01-13 06:00:09 +01:00
|
|
|
from typing import Any, Protocol, TypedDict, TypeGuard
|
2023-06-25 05:18:09 +02:00
|
|
|
|
2023-10-31 11:02:04 +01:00
|
|
|
import numpy as np
|
2024-01-13 06:00:09 +01:00
|
|
|
import numpy.typing as npt
|
2023-06-05 16:40:48 +02:00
|
|
|
from pydantic import BaseModel
|
|
|
|
|
|
|
|
|
2024-01-28 21:54:33 +01:00
|
|
|
class StrEnum(str, Enum):
|
|
|
|
value: str
|
|
|
|
|
|
|
|
def __str__(self) -> str:
|
|
|
|
return self.value
|
|
|
|
|
|
|
|
|
2023-06-05 16:40:48 +02:00
|
|
|
class TextResponse(BaseModel):
|
|
|
|
__root__: str
|
|
|
|
|
|
|
|
|
|
|
|
class MessageResponse(BaseModel):
|
|
|
|
message: str
|
|
|
|
|
|
|
|
|
2023-11-13 17:18:46 +01:00
|
|
|
class BoundingBox(TypedDict):
|
2023-06-05 16:40:48 +02:00
|
|
|
x1: int
|
|
|
|
y1: int
|
|
|
|
x2: int
|
|
|
|
y2: int
|
|
|
|
|
|
|
|
|
2024-01-28 21:54:33 +01:00
|
|
|
class ModelType(StrEnum):
|
2023-06-25 05:18:09 +02:00
|
|
|
CLIP = "clip"
|
|
|
|
FACIAL_RECOGNITION = "facial-recognition"
|
2023-10-31 11:02:04 +01:00
|
|
|
|
|
|
|
|
2024-01-28 21:54:33 +01:00
|
|
|
class ModelRuntime(StrEnum):
|
2024-01-28 16:31:59 +01:00
|
|
|
ONNX = "onnx"
|
|
|
|
ARMNN = "armnn"
|
|
|
|
|
|
|
|
|
2023-11-13 17:18:46 +01:00
|
|
|
class HasProfiling(Protocol):
|
|
|
|
profiling: dict[str, float]
|
|
|
|
|
|
|
|
|
|
|
|
class Face(TypedDict):
|
|
|
|
boundingBox: BoundingBox
|
2024-01-13 06:00:09 +01:00
|
|
|
embedding: npt.NDArray[np.float32]
|
2023-11-13 17:18:46 +01:00
|
|
|
imageWidth: int
|
|
|
|
imageHeight: int
|
|
|
|
score: float
|
|
|
|
|
|
|
|
|
|
|
|
def has_profiling(obj: Any) -> TypeGuard[HasProfiling]:
|
2023-12-26 04:37:48 +01:00
|
|
|
return hasattr(obj, "profiling") and isinstance(obj.profiling, dict)
|
2024-01-13 06:00:09 +01:00
|
|
|
|
|
|
|
|
|
|
|
def is_ndarray(obj: Any, dtype: "type[np._DTypeScalar_co]") -> "TypeGuard[npt.NDArray[np._DTypeScalar_co]]":
|
|
|
|
return isinstance(obj, np.ndarray) and obj.dtype == dtype
|