1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-04 02:46:47 +01:00
immich/machine-learning/app/schemas.py

52 lines
1,023 B
Python
Raw Normal View History

from enum import Enum
from typing import Any, Protocol, TypedDict, TypeGuard
import numpy as np
import numpy.typing as npt
from pydantic import BaseModel
class TextResponse(BaseModel):
__root__: str
class MessageResponse(BaseModel):
message: str
class BoundingBox(TypedDict):
x1: int
y1: int
x2: int
y2: int
class ModelType(str, Enum):
CLIP = "clip"
FACIAL_RECOGNITION = "facial-recognition"
class ModelRuntime(str, Enum):
ONNX = "onnx"
ARMNN = "armnn"
class HasProfiling(Protocol):
profiling: dict[str, float]
class Face(TypedDict):
boundingBox: BoundingBox
embedding: npt.NDArray[np.float32]
imageWidth: int
imageHeight: int
score: float
def has_profiling(obj: Any) -> TypeGuard[HasProfiling]:
return hasattr(obj, "profiling") and isinstance(obj.profiling, dict)
def is_ndarray(obj: Any, dtype: "type[np._DTypeScalar_co]") -> "TypeGuard[npt.NDArray[np._DTypeScalar_co]]":
return isinstance(obj, np.ndarray) and obj.dtype == dtype