2023-08-29 15:58:00 +02:00
|
|
|
from enum import StrEnum
|
2023-10-31 11:02:04 +01:00
|
|
|
from typing import TypeAlias
|
2023-06-25 05:18:09 +02:00
|
|
|
|
2023-10-31 11:02:04 +01:00
|
|
|
import numpy as np
|
2023-06-05 16:40:48 +02:00
|
|
|
from pydantic import BaseModel
|
|
|
|
|
|
|
|
|
|
|
|
def to_lower_camel(string: str) -> str:
|
2023-06-28 01:21:33 +02:00
|
|
|
tokens = [token.capitalize() if i > 0 else token for i, token in enumerate(string.split("_"))]
|
2023-06-05 16:40:48 +02:00
|
|
|
return "".join(tokens)
|
|
|
|
|
|
|
|
|
|
|
|
class TextModelRequest(BaseModel):
|
|
|
|
text: str
|
|
|
|
|
|
|
|
|
|
|
|
class TextResponse(BaseModel):
|
|
|
|
__root__: str
|
|
|
|
|
|
|
|
|
|
|
|
class MessageResponse(BaseModel):
|
|
|
|
message: str
|
|
|
|
|
|
|
|
|
|
|
|
class BoundingBox(BaseModel):
|
|
|
|
x1: int
|
|
|
|
y1: int
|
|
|
|
x2: int
|
|
|
|
y2: int
|
|
|
|
|
|
|
|
|
2023-08-29 15:58:00 +02:00
|
|
|
class ModelType(StrEnum):
|
2023-06-25 05:18:09 +02:00
|
|
|
IMAGE_CLASSIFICATION = "image-classification"
|
|
|
|
CLIP = "clip"
|
|
|
|
FACIAL_RECOGNITION = "facial-recognition"
|
2023-10-31 11:02:04 +01:00
|
|
|
|
|
|
|
|
|
|
|
ndarray_f32: TypeAlias = np.ndarray[int, np.dtype[np.float32]]
|
|
|
|
ndarray_i64: TypeAlias = np.ndarray[int, np.dtype[np.int64]]
|
|
|
|
ndarray_i32: TypeAlias = np.ndarray[int, np.dtype[np.int32]]
|