mirror of
https://github.com/immich-app/immich.git
synced 2025-01-10 05:46:46 +01:00
297 lines
16 KiB
Python
297 lines
16 KiB
Python
import os
|
|
import platform
|
|
import subprocess
|
|
from tempfile import TemporaryDirectory
|
|
from typing import Callable, ClassVar
|
|
|
|
import onnx
|
|
import torch
|
|
from onnx2torch import convert
|
|
from onnx2torch.node_converters.registry import add_converter
|
|
from onnxruntime.tools.onnx_model_utils import fix_output_shapes, make_input_shape_fixed
|
|
from tinynn.converter import TFLiteConverter
|
|
from huggingface_hub import snapshot_download
|
|
from onnx2torch.onnx_graph import OnnxGraph
|
|
from onnx2torch.onnx_node import OnnxNode
|
|
from onnx2torch.utils.common import OperationConverterResult, onnx_mapping_from_node
|
|
from onnx.shape_inference import infer_shapes_path
|
|
from huggingface_hub import login, upload_file
|
|
|
|
# egregious hacks:
|
|
# changed `Clip`'s min/max logic to skip empty strings
|
|
# changed OnnxSqueezeDynamicAxes to use `sorted` instead of `torch.sort``
|
|
# commented out shape inference in `fix_output_shapes``
|
|
|
|
|
|
class ArgMax(torch.nn.Module):
|
|
def __init__(self, dim: int = -1, keepdim: bool = False):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.keepdim = keepdim
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
return torch.argmax(input, dim=self.dim, keepdim=self.keepdim)
|
|
|
|
|
|
class Erf(torch.nn.Module):
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
return torch.erf(input)
|
|
|
|
|
|
@add_converter(operation_type="ArgMax", version=13)
|
|
def _(node: OnnxNode, graph: OnnxGraph) -> OperationConverterResult:
|
|
return OperationConverterResult(
|
|
torch_module=ArgMax(),
|
|
onnx_mapping=onnx_mapping_from_node(node=node),
|
|
)
|
|
|
|
|
|
class ExportBase(torch.nn.Module):
|
|
task: ClassVar[str]
|
|
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
input_shape: tuple[int, ...],
|
|
pretrained: str | None = None,
|
|
optimization_level: int = 5,
|
|
):
|
|
super().__init__()
|
|
self.name = name
|
|
self.optimize = optimization_level
|
|
self.nchw_transpose = False
|
|
self.input_shape = input_shape
|
|
self.pretrained = pretrained
|
|
self.dummy_param = torch.nn.Parameter(torch.empty(0))
|
|
self.model = self.load().eval()
|
|
for param in self.parameters():
|
|
param.requires_grad_(False)
|
|
self.eval()
|
|
|
|
def load(self) -> torch.nn.Module:
|
|
cache_dir = os.path.join(os.environ["CACHE_DIR"], self.model_name)
|
|
task_path = os.path.join(cache_dir, self.task)
|
|
model_path = os.path.join(task_path, "model.onnx")
|
|
if not os.path.isfile(model_path):
|
|
snapshot_download(self.repo_name, cache_dir=cache_dir, local_dir=cache_dir)
|
|
infer_shapes_path(model_path, check_type=True, strict_mode=True, data_prop=True)
|
|
onnx_model = onnx.load_model(model_path)
|
|
make_input_shape_fixed(onnx_model.graph, onnx_model.graph.input[0].name, self.input_shape)
|
|
fix_output_shapes(onnx_model)
|
|
# try:
|
|
# onnx.save(onnx_model, model_path)
|
|
# except:
|
|
# onnx.save(onnx_model, model_path, save_as_external_data=True, all_tensors_to_one_file=False)
|
|
# infer_shapes_path(model_path, check_type=True, strict_mode=True, data_prop=True)
|
|
# onnx_model = onnx.load_model(model_path)
|
|
# onnx_model = infer_shapes(onnx_model, check_type=True, strict_mode=True, data_prop=True)
|
|
return convert(onnx_model)
|
|
|
|
def forward(self, *inputs: torch.Tensor) -> torch.Tensor | tuple[torch.Tensor]:
|
|
if self.precision == "fp16":
|
|
inputs = tuple(i.half() for i in inputs)
|
|
|
|
out = self._forward(*inputs)
|
|
if self.precision == "fp16":
|
|
if isinstance(out, tuple):
|
|
return tuple(o.float() for o in out)
|
|
return out.float()
|
|
return out
|
|
|
|
def _forward(self, *inputs: torch.Tensor) -> torch.Tensor | tuple[torch.Tensor]:
|
|
return self.model(*inputs)
|
|
|
|
def to_armnn(self, output_path: str) -> None:
|
|
output_dir = os.path.dirname(output_path)
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
self(*self.dummy_inputs)
|
|
print(f"Exporting {self.model_name} ({self.task}) with {self.precision} precision")
|
|
jit = torch.jit.trace(self, self.dummy_inputs).eval()
|
|
with TemporaryDirectory() as tmpdir:
|
|
tflite_model_path = os.path.join(tmpdir, "model.tflite")
|
|
converter = TFLiteConverter(
|
|
jit,
|
|
self.dummy_inputs,
|
|
tflite_model_path,
|
|
optimize=self.optimize,
|
|
nchw_transpose=self.nchw_transpose,
|
|
)
|
|
# segfaults on ARM, must run on x86_64 / AMD64
|
|
converter.convert()
|
|
|
|
subprocess.run(
|
|
[
|
|
"./armnnconverter",
|
|
"-f",
|
|
"tflite-binary",
|
|
"-m",
|
|
tflite_model_path,
|
|
"-i",
|
|
"input_tensor",
|
|
"-o",
|
|
"output_tensor",
|
|
"-p",
|
|
output_path,
|
|
],
|
|
capture_output=True,
|
|
)
|
|
print(f"Finished exporting {self.name} ({self.task}) with {self.precision} precision")
|
|
|
|
@property
|
|
def dummy_inputs(self) -> tuple[torch.FloatTensor]:
|
|
return (torch.rand(self.input_shape, device=self.device, dtype=self.dtype),)
|
|
|
|
@property
|
|
def model_name(self) -> str:
|
|
return f"{self.name}__{self.pretrained}" if self.pretrained else self.name
|
|
|
|
@property
|
|
def repo_name(self) -> str:
|
|
return f"immich-app/{self.model_name}"
|
|
|
|
@property
|
|
def device(self) -> torch.device:
|
|
return self.dummy_param.device
|
|
|
|
@property
|
|
def dtype(self) -> torch.dtype:
|
|
return self.dummy_param.dtype
|
|
|
|
@property
|
|
def precision(self) -> str:
|
|
match self.dtype:
|
|
case torch.float32:
|
|
return "fp32"
|
|
case torch.float16:
|
|
return "fp16"
|
|
case _:
|
|
raise ValueError(f"Unsupported dtype {self.dtype}")
|
|
|
|
|
|
class ArcFace(ExportBase):
|
|
task = "recognition"
|
|
|
|
|
|
class RetinaFace(ExportBase):
|
|
task = "detection"
|
|
|
|
|
|
class OpenClipVisual(ExportBase):
|
|
task = "visual"
|
|
|
|
|
|
class OpenClipTextual(ExportBase):
|
|
task = "textual"
|
|
|
|
@property
|
|
def dummy_inputs(self) -> tuple[torch.LongTensor]:
|
|
return (torch.randint(0, 5000, self.input_shape, device=self.device, dtype=torch.int32),)
|
|
|
|
|
|
class MClipTextual(ExportBase):
|
|
task = "textual"
|
|
|
|
@property
|
|
def dummy_inputs(self) -> tuple[torch.LongTensor]:
|
|
return (
|
|
torch.randint(0, 5000, self.input_shape, device=self.device, dtype=torch.int32),
|
|
torch.randint(0, 1, self.input_shape, device=self.device, dtype=torch.int32),
|
|
)
|
|
|
|
|
|
def main() -> None:
|
|
if platform.machine() not in ("x86_64", "AMD64"):
|
|
raise RuntimeError(f"Can only run on x86_64 / AMD64, not {platform.machine()}")
|
|
login(token=os.environ["HF_AUTH_TOKEN"])
|
|
os.environ["LD_LIBRARY_PATH"] = "armnn"
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
|
failed: list[Callable[[], ExportBase]] = [
|
|
lambda: OpenClipVisual("ViT-H-14-378-quickgelu", (1, 3, 378, 378), pretrained="dfn5b"), # flatbuffers: cannot grow buffer beyond 2 gigabytes (will probably work with fp16)
|
|
lambda: OpenClipVisual("ViT-H-14-quickgelu", (1, 3, 224, 224), pretrained="dfn5b"), # flatbuffers: cannot grow buffer beyond 2 gigabytes (will probably work with fp16)
|
|
lambda: OpenClipTextual("nllb-clip-base-siglip", (1, 77), pretrained="v1"), # ERROR (tinynn.converter.base) Unsupported ops: aten::logical_not
|
|
lambda: OpenClipTextual("nllb-clip-large-siglip", (1, 77), pretrained="v1"), # ERROR (tinynn.converter.base) Unsupported ops: aten::logical_not
|
|
lambda: OpenClipVisual("ViT-B-32", (1, 3, 224, 224), pretrained="laion2b_e16"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipTextual("ViT-B-32", (1, 77), pretrained="laion2b_e16"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipVisual("ViT-B-32", (1, 3, 224, 224), pretrained="laion400m_e31"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipTextual("ViT-B-32", (1, 77), pretrained="laion400m_e31"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipVisual("ViT-B-32", (1, 3, 224, 224), pretrained="laion400m_e32"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipTextual("ViT-B-32", (1, 77), pretrained="laion400m_e32"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipVisual("ViT-B-32", (1, 3, 224, 224), pretrained="laion2b-s34b-b79k"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipTextual("ViT-B-32", (1, 77), pretrained="laion2b-s34b-b79k"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipVisual("ViT-B-16", (1, 3, 224, 224), pretrained="laion400m_e31"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipTextual("ViT-B-16", (1, 77), pretrained="laion400m_e31"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipVisual("ViT-B-16", (1, 3, 224, 224), pretrained="laion400m_e32"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipTextual("ViT-B-16", (1, 77), pretrained="laion400m_e32"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipVisual("ViT-B-16-plus-240", (1, 3, 224, 224), pretrained="laion400m_e31"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipTextual("ViT-B-16-plus-240", (1, 77), pretrained="laion400m_e31"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipVisual("ViT-L-14", (1, 3, 224, 224), pretrained="laion400m_e31"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipTextual("ViT-L-14", (1, 77), pretrained="laion400m_e31"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipVisual("ViT-L-14", (1, 3, 224, 224), pretrained="laion400m_e32"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipTextual("ViT-L-14", (1, 77), pretrained="laion400m_e32"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipVisual("ViT-L-14", (1, 3, 224, 224), pretrained="laion2b-s32b-b82k"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipTextual("ViT-L-14", (1, 77), pretrained="laion2b-s32b-b82k"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipVisual("ViT-H-14", (1, 3, 224, 224), pretrained="laion2b-s32b-b79k"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipTextual("ViT-H-14", (1, 77), pretrained="laion2b-s32b-b79k"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipVisual("ViT-g-14", (1, 3, 224, 224), pretrained="laion2b-s12b-b42k"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipTextual("ViT-g-14", (1, 77), pretrained="laion2b-s12b-b42k"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipVisual("XLM-Roberta-Large-Vit-B-16Plus", (1, 3, 240, 240)), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipVisual("XLM-Roberta-Large-ViT-H-14", (1, 3, 224, 224), pretrained="frozen_laion5b_s13b_b90k"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipVisual("nllb-clip-base-siglip", (1, 3, 384, 384), pretrained="v1"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipVisual("nllb-clip-large-siglip", (1, 3, 384, 384), pretrained="v1"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
|
|
lambda: OpenClipVisual("RN50", (1, 3, 224, 224), pretrained="yfcc15m"), # BatchNorm operation with mean/var output is not implemented
|
|
lambda: OpenClipTextual("RN50", (1, 77), pretrained="yfcc15m"), # BatchNorm operation with mean/var output is not implemented
|
|
lambda: OpenClipVisual("RN50", (1, 3, 224, 224), pretrained="cc12m"), # BatchNorm operation with mean/var output is not implemented
|
|
lambda: OpenClipTextual("RN50", (1, 77), pretrained="cc12m"), # BatchNorm operation with mean/var output is not implemented
|
|
lambda: MClipTextual("XLM-Roberta-Large-Vit-L-14", (1, 77)), # Expected normalized_shape to be at least 1-dimensional, i.e., containing at least one element, but got normalized_shape = []
|
|
lambda: MClipTextual("XLM-Roberta-Large-Vit-B-16Plus", (1, 77)), # Expected normalized_shape to be at least 1-dimensional, i.e., containing at least one element, but got normalized_shape = []
|
|
lambda: MClipTextual("LABSE-Vit-L-14", (1, 77)), # Expected normalized_shape to be at least 1-dimensional, i.e., containing at least one element, but got normalized_shape = []
|
|
lambda: OpenClipTextual("XLM-Roberta-Large-ViT-H-14", (1, 77), pretrained="frozen_laion5b_s13b_b90k"), # Expected normalized_shape to be at least 1-dimensional, i.e., containing at least one element, but got normalized_shape = []
|
|
]
|
|
|
|
succeeded: list[Callable[[], ExportBase]] = [
|
|
lambda: OpenClipVisual("ViT-B-32", (1, 3, 224, 224), pretrained="openai"),
|
|
lambda: OpenClipTextual("ViT-B-32", (1, 77), pretrained="openai"),
|
|
lambda: OpenClipVisual("ViT-B-16", (1, 3, 224, 224), pretrained="openai"),
|
|
lambda: OpenClipTextual("ViT-B-16", (1, 77), pretrained="openai"),
|
|
lambda: OpenClipVisual("ViT-L-14", (1, 3, 224, 224), pretrained="openai"),
|
|
lambda: OpenClipTextual("ViT-L-14", (1, 77), pretrained="openai"),
|
|
lambda: OpenClipVisual("ViT-L-14-336", (1, 3, 336, 336), pretrained="openai"),
|
|
lambda: OpenClipTextual("ViT-L-14-336", (1, 77), pretrained="openai"),
|
|
lambda: OpenClipVisual("RN50", (1, 3, 224, 224), pretrained="openai"),
|
|
lambda: OpenClipTextual("RN50", (1, 77), pretrained="openai"),
|
|
lambda: OpenClipTextual("ViT-H-14-quickgelu", (1, 77), pretrained="dfn5b"),
|
|
lambda: OpenClipTextual("ViT-H-14-378-quickgelu", (1, 77), pretrained="dfn5b"),
|
|
lambda: OpenClipVisual("XLM-Roberta-Large-Vit-L-14", (1, 3, 224, 224)),
|
|
lambda: OpenClipVisual("XLM-Roberta-Large-Vit-B-32", (1, 3, 224, 224)),
|
|
lambda: ArcFace("buffalo_s", (1, 3, 112, 112), optimization_level=3),
|
|
lambda: RetinaFace("buffalo_s", (1, 3, 640, 640), optimization_level=3),
|
|
lambda: ArcFace("buffalo_m", (1, 3, 112, 112), optimization_level=3),
|
|
lambda: RetinaFace("buffalo_m", (1, 3, 640, 640), optimization_level=3),
|
|
lambda: ArcFace("buffalo_l", (1, 3, 112, 112), optimization_level=3),
|
|
lambda: RetinaFace("buffalo_l", (1, 3, 640, 640), optimization_level=3),
|
|
lambda: ArcFace("antelopev2", (1, 3, 112, 112), optimization_level=3),
|
|
lambda: RetinaFace("antelopev2", (1, 3, 640, 640), optimization_level=3),
|
|
]
|
|
|
|
models: list[Callable[[], ExportBase]] = [*failed, *succeeded]
|
|
for _model in succeeded:
|
|
model = _model().to(device)
|
|
try:
|
|
relative_path = os.path.join(model.task, "model.armnn")
|
|
output_path = os.path.join("output", model.model_name, relative_path)
|
|
model.to_armnn(output_path)
|
|
upload_file(path_or_fileobj=output_path, path_in_repo=relative_path, repo_id=model.repo_name)
|
|
if device == torch.device("cuda"):
|
|
model.half()
|
|
relative_path = os.path.join(model.task, "fp16", "model.armnn")
|
|
output_path = os.path.join("output", model.model_name, relative_path)
|
|
model.to_armnn(output_path)
|
|
upload_file(path_or_fileobj=output_path, path_in_repo=relative_path, repo_id=model.repo_name)
|
|
|
|
except Exception as exc:
|
|
print(f"Failed to export {model.model_name} ({model.task}): {exc}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
with torch.no_grad():
|
|
main()
|