1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2024-12-29 15:11:58 +00:00

enhance armnn conversion

This commit is contained in:
mertalev 2024-07-05 19:38:47 -04:00
parent 5748f50c1f
commit 956480ab2c
No known key found for this signature in database
GPG key ID: 9181CD92C0A1C5E3
21 changed files with 656 additions and 189 deletions

View file

@ -1,3 +0,0 @@
#!/usr/bin/env sh
g++ -shared -O3 -o libann.so -fuse-ld=gold -std=c++17 -I"$ARMNN_PATH"/include -larmnn -larmnnDeserializer -larmnnTfLiteParser -larmnnOnnxParser -L"$ARMNN_PATH" ann.cpp

View file

@ -1,4 +0,0 @@
#!/usr/bin/env sh
cd armnn-23.11/ || exit
g++ -o ../armnnconverter -O1 -DARMNN_ONNX_PARSER -DARMNN_SERIALIZER -DARMNN_TF_LITE_PARSER -fuse-ld=gold -std=c++17 -Iinclude -Isrc/armnnUtils -Ithird-party -larmnn -larmnnDeserializer -larmnnTfLiteParser -larmnnOnnxParser -larmnnSerializer -L../armnn src/armnnConverter/ArmnnConverter.cpp

View file

@ -1,157 +0,0 @@
import logging
import os
import platform
import subprocess
from abc import abstractmethod
import onnx
import open_clip
import torch
from onnx2torch import convert
from onnxruntime.tools.onnx_model_utils import fix_output_shapes, make_input_shape_fixed
from tinynn.converter import TFLiteConverter
class ExportBase(torch.nn.Module):
input_shape: tuple[int, ...]
def __init__(self, device: torch.device, name: str):
super().__init__()
self.device = device
self.name = name
self.optimize = 5
self.nchw_transpose = False
@abstractmethod
def forward(self, input_tensor: torch.Tensor) -> torch.Tensor | tuple[torch.Tensor]:
pass
def dummy_input(self) -> torch.FloatTensor:
return torch.rand((1, 3, 224, 224), device=self.device)
class ArcFace(ExportBase):
input_shape = (1, 3, 112, 112)
def __init__(self, onnx_model_path: str, device: torch.device):
name, _ = os.path.splitext(os.path.basename(onnx_model_path))
super().__init__(device, name)
onnx_model = onnx.load_model(onnx_model_path)
make_input_shape_fixed(onnx_model.graph, onnx_model.graph.input[0].name, self.input_shape)
fix_output_shapes(onnx_model)
self.model = convert(onnx_model).to(device)
if self.device.type == "cuda":
self.model = self.model.half()
def forward(self, input_tensor: torch.Tensor) -> torch.FloatTensor:
embedding: torch.FloatTensor = self.model(
input_tensor.half() if self.device.type == "cuda" else input_tensor
).float()
assert isinstance(embedding, torch.FloatTensor)
return embedding
def dummy_input(self) -> torch.FloatTensor:
return torch.rand(self.input_shape, device=self.device)
class RetinaFace(ExportBase):
input_shape = (1, 3, 640, 640)
def __init__(self, onnx_model_path: str, device: torch.device):
name, _ = os.path.splitext(os.path.basename(onnx_model_path))
super().__init__(device, name)
self.optimize = 3
self.model = convert(onnx_model_path).eval().to(device)
if self.device.type == "cuda":
self.model = self.model.half()
def forward(self, input_tensor: torch.Tensor) -> tuple[torch.FloatTensor]:
out: torch.Tensor = self.model(input_tensor.half() if self.device.type == "cuda" else input_tensor)
return tuple(o.float() for o in out)
def dummy_input(self) -> torch.FloatTensor:
return torch.rand(self.input_shape, device=self.device)
class ClipVision(ExportBase):
input_shape = (1, 3, 224, 224)
def __init__(self, model_name: str, weights: str, device: torch.device):
super().__init__(device, model_name + "__" + weights)
self.model = open_clip.create_model(
model_name,
weights,
precision="fp16" if device.type == "cuda" else "fp32",
jit=False,
require_pretrained=True,
device=device,
)
def forward(self, input_tensor: torch.Tensor) -> torch.FloatTensor:
embedding: torch.Tensor = self.model.encode_image(
input_tensor.half() if self.device.type == "cuda" else input_tensor,
normalize=True,
).float()
return embedding
def export(model: ExportBase) -> None:
model.eval()
for param in model.parameters():
param.requires_grad = False
dummy_input = model.dummy_input()
model(dummy_input)
jit = torch.jit.trace(model, dummy_input) # type: ignore[no-untyped-call,attr-defined]
tflite_model_path = f"output/{model.name}.tflite"
os.makedirs("output", exist_ok=True)
converter = TFLiteConverter(
jit,
dummy_input,
tflite_model_path,
optimize=model.optimize,
nchw_transpose=model.nchw_transpose,
)
# segfaults on ARM, must run on x86_64 / AMD64
converter.convert()
armnn_model_path = f"output/{model.name}.armnn"
os.environ["LD_LIBRARY_PATH"] = "armnn"
subprocess.run(
[
"./armnnconverter",
"-f",
"tflite-binary",
"-m",
tflite_model_path,
"-i",
"input_tensor",
"-o",
"output_tensor",
"-p",
armnn_model_path,
]
)
def main() -> None:
if platform.machine() not in ("x86_64", "AMD64"):
raise RuntimeError(f"Can only run on x86_64 / AMD64, not {platform.machine()}")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if device.type != "cuda":
logging.warning(
"No CUDA available, cannot create fp16 model! proceeding to create a fp32 model (use only for testing)"
)
models = [
ClipVision("ViT-B-32", "openai", device),
ArcFace("buffalo_l_rec.onnx", device),
RetinaFace("buffalo_l_det.onnx", device),
]
for model in models:
export(model)
if __name__ == "__main__":
with torch.no_grad():
main()

View file

@ -0,0 +1,28 @@
FROM mambaorg/micromamba:bookworm-slim@sha256:333f7598ff2c2400fb10bfe057709c68b7daab5d847143af85abcf224a07271a as builder
ENV TRANSFORMERS_CACHE=/cache \
PYTHONDONTWRITEBYTECODE=1 \
PYTHONUNBUFFERED=1 \
PATH="/opt/venv/bin:$PATH"
WORKDIR /export/ann
USER root
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential \
curl \
git
USER $MAMBA_USER
COPY --chown=$MAMBA_USER:$MAMBA_USER env.yaml ./
RUN micromamba install -y -f env.yaml
COPY --chown=$MAMBA_USER:$MAMBA_USER *.sh *.cpp ./
ENV ARMNN_PATH=/export/ann/armnn
RUN ./download-armnn.sh && \
./build-converter.sh && \
./build.sh
COPY --chown=$MAMBA_USER:$MAMBA_USER run.py ./
ENTRYPOINT ["/usr/local/bin/_entrypoint.sh"]
CMD ["python", "run.py"]

View file

@ -0,0 +1,281 @@
#include <fstream>
#include <mutex>
#include <atomic>
#include "armnn/IRuntime.hpp"
#include "armnn/INetwork.hpp"
#include "armnn/Types.hpp"
#include "armnnDeserializer/IDeserializer.hpp"
#include "armnnTfLiteParser/ITfLiteParser.hpp"
#include "armnnOnnxParser/IOnnxParser.hpp"
using namespace armnn;
struct IOInfos
{
std::vector<BindingPointInfo> inputInfos;
std::vector<BindingPointInfo> outputInfos;
};
// from https://rigtorp.se/spinlock/
struct SpinLock
{
std::atomic<bool> lock_ = {false};
void lock()
{
for (;;)
{
if (!lock_.exchange(true, std::memory_order_acquire))
{
break;
}
while (lock_.load(std::memory_order_relaxed))
;
}
}
void unlock() { lock_.store(false, std::memory_order_release); }
};
class Ann
{
public:
int load(const char *modelPath,
bool fastMath,
bool fp16,
bool saveCachedNetwork,
const char *cachedNetworkPath)
{
INetworkPtr network = loadModel(modelPath);
IOptimizedNetworkPtr optNet = OptimizeNetwork(network.get(), fastMath, fp16, saveCachedNetwork, cachedNetworkPath);
const IOInfos infos = getIOInfos(optNet.get());
NetworkId netId;
mutex.lock();
Status status = runtime->LoadNetwork(netId, std::move(optNet));
mutex.unlock();
if (status != Status::Success)
{
return -1;
}
spinLock.lock();
ioInfos[netId] = infos;
mutexes.emplace(netId, std::make_unique<std::mutex>());
spinLock.unlock();
return netId;
}
void execute(NetworkId netId, const void **inputData, void **outputData)
{
spinLock.lock();
const IOInfos *infos = &ioInfos[netId];
auto m = mutexes[netId].get();
spinLock.unlock();
InputTensors inputTensors;
inputTensors.reserve(infos->inputInfos.size());
size_t i = 0;
for (const BindingPointInfo &info : infos->inputInfos)
inputTensors.emplace_back(info.first, ConstTensor(info.second, inputData[i++]));
OutputTensors outputTensors;
outputTensors.reserve(infos->outputInfos.size());
i = 0;
for (const BindingPointInfo &info : infos->outputInfos)
outputTensors.emplace_back(info.first, Tensor(info.second, outputData[i++]));
m->lock();
runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
m->unlock();
}
void unload(NetworkId netId)
{
mutex.lock();
runtime->UnloadNetwork(netId);
mutex.unlock();
}
int tensors(NetworkId netId, bool isInput = false)
{
spinLock.lock();
const IOInfos *infos = &ioInfos[netId];
spinLock.unlock();
return (int)(isInput ? infos->inputInfos.size() : infos->outputInfos.size());
}
unsigned long shape(NetworkId netId, bool isInput = false, int index = 0)
{
spinLock.lock();
const IOInfos *infos = &ioInfos[netId];
spinLock.unlock();
const TensorShape shape = (isInput ? infos->inputInfos : infos->outputInfos)[index].second.GetShape();
unsigned long s = 0;
for (unsigned int d = 0; d < shape.GetNumDimensions(); d++)
s |= ((unsigned long)shape[d]) << (d * 16); // stores up to 4 16-bit values in a 64-bit value
return s;
}
Ann(int tuningLevel, const char *tuningFile)
{
IRuntime::CreationOptions runtimeOptions;
BackendOptions backendOptions{"GpuAcc",
{
{"TuningLevel", tuningLevel},
{"MemoryOptimizerStrategy", "ConstantMemoryStrategy"}, // SingleAxisPriorityList or ConstantMemoryStrategy
}};
if (tuningFile)
backendOptions.AddOption({"TuningFile", tuningFile});
runtimeOptions.m_BackendOptions.emplace_back(backendOptions);
runtime = IRuntime::CreateRaw(runtimeOptions);
};
~Ann()
{
IRuntime::Destroy(runtime);
};
private:
INetworkPtr loadModel(const char *modelPath)
{
const auto path = std::string(modelPath);
if (path.rfind(".tflite") == path.length() - 7) // endsWith()
{
auto parser = armnnTfLiteParser::ITfLiteParser::CreateRaw();
return parser->CreateNetworkFromBinaryFile(modelPath);
}
else if (path.rfind(".onnx") == path.length() - 5) // endsWith()
{
auto parser = armnnOnnxParser::IOnnxParser::CreateRaw();
return parser->CreateNetworkFromBinaryFile(modelPath);
}
else
{
std::ifstream ifs(path, std::ifstream::in | std::ifstream::binary);
auto parser = armnnDeserializer::IDeserializer::CreateRaw();
return parser->CreateNetworkFromBinary(ifs);
}
}
static BindingPointInfo getInputTensorInfo(LayerBindingId inputBindingId, TensorInfo info)
{
const auto newInfo = TensorInfo{info.GetShape(), info.GetDataType(),
info.GetQuantizationScale(),
info.GetQuantizationOffset(),
true};
return {inputBindingId, newInfo};
}
IOptimizedNetworkPtr OptimizeNetwork(INetwork *network, bool fastMath, bool fp16, bool saveCachedNetwork, const char *cachedNetworkPath)
{
const bool allowExpandedDims = false;
const ShapeInferenceMethod shapeInferenceMethod = ShapeInferenceMethod::ValidateOnly;
OptimizerOptionsOpaque options;
options.SetReduceFp32ToFp16(fp16);
options.SetShapeInferenceMethod(shapeInferenceMethod);
options.SetAllowExpandedDims(allowExpandedDims);
BackendOptions gpuAcc("GpuAcc", {{"FastMathEnabled", fastMath}});
if (cachedNetworkPath)
{
gpuAcc.AddOption({"SaveCachedNetwork", saveCachedNetwork});
gpuAcc.AddOption({"CachedNetworkFilePath", cachedNetworkPath});
}
options.AddModelOption(gpuAcc);
// No point in using ARMNN for CPU, use ONNX (quantized) instead.
// BackendOptions cpuAcc("CpuAcc",
// {
// {"FastMathEnabled", fastMath},
// {"NumberOfThreads", 0},
// });
// options.AddModelOption(cpuAcc);
BackendOptions allowExDimOpt("AllowExpandedDims",
{{"AllowExpandedDims", allowExpandedDims}});
options.AddModelOption(allowExDimOpt);
BackendOptions shapeInferOpt("ShapeInferenceMethod",
{{"InferAndValidate", shapeInferenceMethod == ShapeInferenceMethod::InferAndValidate}});
options.AddModelOption(shapeInferOpt);
std::vector<BackendId> backends = {
BackendId("GpuAcc"),
// BackendId("CpuAcc"),
// BackendId("CpuRef"),
};
return Optimize(*network, backends, runtime->GetDeviceSpec(), options);
}
IOInfos getIOInfos(IOptimizedNetwork *optNet)
{
struct InfoStrategy : IStrategy
{
void ExecuteStrategy(const IConnectableLayer *layer,
const BaseDescriptor &descriptor,
const std::vector<ConstTensor> &constants,
const char *name,
const LayerBindingId id = 0) override
{
IgnoreUnused(descriptor, constants, id);
const LayerType lt = layer->GetType();
if (lt == LayerType::Input)
ioInfos.inputInfos.push_back(getInputTensorInfo(id, layer->GetOutputSlot(0).GetTensorInfo()));
else if (lt == LayerType::Output)
ioInfos.outputInfos.push_back({id, layer->GetInputSlot(0).GetTensorInfo()});
}
IOInfos ioInfos;
};
InfoStrategy infoStrategy;
optNet->ExecuteStrategy(infoStrategy);
return infoStrategy.ioInfos;
}
IRuntime *runtime;
std::map<NetworkId, IOInfos> ioInfos;
std::map<NetworkId, std::unique_ptr<std::mutex>> mutexes; // mutex per network to not execute the same the same network concurrently
std::mutex mutex; // global mutex for load/unload calls to the runtime
SpinLock spinLock; // fast spin lock to guard access to the ioInfos and mutexes maps
};
extern "C" void *init(int logLevel, int tuningLevel, const char *tuningFile)
{
LogSeverity level = static_cast<LogSeverity>(logLevel);
ConfigureLogging(true, true, level);
Ann *ann = new Ann(tuningLevel, tuningFile);
return ann;
}
extern "C" void destroy(void *ann)
{
delete ((Ann *)ann);
}
extern "C" int load(void *ann,
const char *path,
bool fastMath,
bool fp16,
bool saveCachedNetwork,
const char *cachedNetworkPath)
{
return ((Ann *)ann)->load(path, fastMath, fp16, saveCachedNetwork, cachedNetworkPath);
}
extern "C" void unload(void *ann, NetworkId netId)
{
((Ann *)ann)->unload(netId);
}
extern "C" void execute(void *ann, NetworkId netId, const void **inputData, void **outputData)
{
((Ann *)ann)->execute(netId, inputData, outputData);
}
extern "C" unsigned long shape(void *ann, NetworkId netId, bool isInput, int index)
{
return ((Ann *)ann)->shape(netId, isInput, index);
}
extern "C" int tensors(void *ann, NetworkId netId, bool isInput)
{
return ((Ann *)ann)->tensors(netId, isInput);
}

View file

@ -0,0 +1,4 @@
#!/usr/bin/env sh
cd armnn-23.11/ || exit
g++ -o ../armnnconverter -fPIC -O1 -DARMNN_ONNX_PARSER -DARMNN_SERIALIZER -DARMNN_TF_LITE_PARSER -fuse-ld=gold -std=c++17 -Iinclude -Isrc/armnnUtils -Ithird-party -larmnn -larmnnDeserializer -larmnnTfLiteParser -larmnnOnnxParser -larmnnSerializer -L../armnn src/armnnConverter/ArmnnConverter.cpp

View file

@ -0,0 +1,3 @@
#!/usr/bin/env sh
g++ -shared -O3 -fPIC -o libann.so -fuse-ld=gold -std=c++17 -I"$ARMNN_PATH"/include -larmnn -larmnnDeserializer -larmnnTfLiteParser -larmnnOnnxParser -L"$ARMNN_PATH" ann.cpp

View file

@ -0,0 +1,297 @@
import os
import platform
import subprocess
from tempfile import TemporaryDirectory
from typing import Callable, ClassVar
import onnx
import torch
from onnx2torch import convert
from onnx2torch.node_converters.registry import add_converter
from onnxruntime.tools.onnx_model_utils import fix_output_shapes, make_input_shape_fixed
from tinynn.converter import TFLiteConverter
from huggingface_hub import snapshot_download
from onnx2torch.onnx_graph import OnnxGraph
from onnx2torch.onnx_node import OnnxNode
from onnx2torch.utils.common import OperationConverterResult, onnx_mapping_from_node
from onnx.shape_inference import infer_shapes_path
from huggingface_hub import login, upload_file
# egregious hacks:
# changed `Clip`'s min/max logic to skip empty strings
# changed OnnxSqueezeDynamicAxes to use `sorted` instead of `torch.sort``
# commented out shape inference in `fix_output_shapes``
class ArgMax(torch.nn.Module):
def __init__(self, dim: int = -1, keepdim: bool = False):
super().__init__()
self.dim = dim
self.keepdim = keepdim
def forward(self, input: torch.Tensor) -> torch.Tensor:
return torch.argmax(input, dim=self.dim, keepdim=self.keepdim)
class Erf(torch.nn.Module):
def forward(self, input: torch.Tensor) -> torch.Tensor:
return torch.erf(input)
@add_converter(operation_type="ArgMax", version=13)
def _(node: OnnxNode, graph: OnnxGraph) -> OperationConverterResult:
return OperationConverterResult(
torch_module=ArgMax(),
onnx_mapping=onnx_mapping_from_node(node=node),
)
class ExportBase(torch.nn.Module):
task: ClassVar[str]
def __init__(
self,
name: str,
input_shape: tuple[int, ...],
pretrained: str | None = None,
optimization_level: int = 5,
):
super().__init__()
self.name = name
self.optimize = optimization_level
self.nchw_transpose = False
self.input_shape = input_shape
self.pretrained = pretrained
self.dummy_param = torch.nn.Parameter(torch.empty(0))
self.model = self.load().eval()
for param in self.parameters():
param.requires_grad_(False)
self.eval()
def load(self) -> torch.nn.Module:
cache_dir = os.path.join(os.environ["CACHE_DIR"], self.model_name)
task_path = os.path.join(cache_dir, self.task)
model_path = os.path.join(task_path, "model.onnx")
if not os.path.isfile(model_path):
snapshot_download(self.repo_name, cache_dir=cache_dir, local_dir=cache_dir)
infer_shapes_path(model_path, check_type=True, strict_mode=True, data_prop=True)
onnx_model = onnx.load_model(model_path)
make_input_shape_fixed(onnx_model.graph, onnx_model.graph.input[0].name, self.input_shape)
fix_output_shapes(onnx_model)
# try:
# onnx.save(onnx_model, model_path)
# except:
# onnx.save(onnx_model, model_path, save_as_external_data=True, all_tensors_to_one_file=False)
# infer_shapes_path(model_path, check_type=True, strict_mode=True, data_prop=True)
# onnx_model = onnx.load_model(model_path)
# onnx_model = infer_shapes(onnx_model, check_type=True, strict_mode=True, data_prop=True)
return convert(onnx_model)
def forward(self, *inputs: torch.Tensor) -> torch.Tensor | tuple[torch.Tensor]:
if self.precision == "fp16":
inputs = tuple(i.half() for i in inputs)
out = self._forward(*inputs)
if self.precision == "fp16":
if isinstance(out, tuple):
return tuple(o.float() for o in out)
return out.float()
return out
def _forward(self, *inputs: torch.Tensor) -> torch.Tensor | tuple[torch.Tensor]:
return self.model(*inputs)
def to_armnn(self, output_path: str) -> None:
output_dir = os.path.dirname(output_path)
os.makedirs(output_dir, exist_ok=True)
self(*self.dummy_inputs)
print(f"Exporting {self.model_name} ({self.task}) with {self.precision} precision")
jit = torch.jit.trace(self, self.dummy_inputs).eval()
with TemporaryDirectory() as tmpdir:
tflite_model_path = os.path.join(tmpdir, "model.tflite")
converter = TFLiteConverter(
jit,
self.dummy_inputs,
tflite_model_path,
optimize=self.optimize,
nchw_transpose=self.nchw_transpose,
)
# segfaults on ARM, must run on x86_64 / AMD64
converter.convert()
subprocess.run(
[
"./armnnconverter",
"-f",
"tflite-binary",
"-m",
tflite_model_path,
"-i",
"input_tensor",
"-o",
"output_tensor",
"-p",
output_path,
],
capture_output=True,
)
print(f"Finished exporting {self.name} ({self.task}) with {self.precision} precision")
@property
def dummy_inputs(self) -> tuple[torch.FloatTensor]:
return (torch.rand(self.input_shape, device=self.device, dtype=self.dtype),)
@property
def model_name(self) -> str:
return f"{self.name}__{self.pretrained}" if self.pretrained else self.name
@property
def repo_name(self) -> str:
return f"immich-app/{self.model_name}"
@property
def device(self) -> torch.device:
return self.dummy_param.device
@property
def dtype(self) -> torch.dtype:
return self.dummy_param.dtype
@property
def precision(self) -> str:
match self.dtype:
case torch.float32:
return "fp32"
case torch.float16:
return "fp16"
case _:
raise ValueError(f"Unsupported dtype {self.dtype}")
class ArcFace(ExportBase):
task = "recognition"
class RetinaFace(ExportBase):
task = "detection"
class OpenClipVisual(ExportBase):
task = "visual"
class OpenClipTextual(ExportBase):
task = "textual"
@property
def dummy_inputs(self) -> tuple[torch.LongTensor]:
return (torch.randint(0, 5000, self.input_shape, device=self.device, dtype=torch.int32),)
class MClipTextual(ExportBase):
task = "textual"
@property
def dummy_inputs(self) -> tuple[torch.LongTensor]:
return (
torch.randint(0, 5000, self.input_shape, device=self.device, dtype=torch.int32),
torch.randint(0, 1, self.input_shape, device=self.device, dtype=torch.int32),
)
def main() -> None:
if platform.machine() not in ("x86_64", "AMD64"):
raise RuntimeError(f"Can only run on x86_64 / AMD64, not {platform.machine()}")
login(token=os.environ["HF_AUTH_TOKEN"])
os.environ["LD_LIBRARY_PATH"] = "armnn"
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
failed: list[Callable[[], ExportBase]] = [
lambda: OpenClipVisual("ViT-H-14-378-quickgelu", (1, 3, 378, 378), pretrained="dfn5b"), # flatbuffers: cannot grow buffer beyond 2 gigabytes (will probably work with fp16)
lambda: OpenClipVisual("ViT-H-14-quickgelu", (1, 3, 224, 224), pretrained="dfn5b"), # flatbuffers: cannot grow buffer beyond 2 gigabytes (will probably work with fp16)
lambda: OpenClipTextual("nllb-clip-base-siglip", (1, 77), pretrained="v1"), # ERROR (tinynn.converter.base) Unsupported ops: aten::logical_not
lambda: OpenClipTextual("nllb-clip-large-siglip", (1, 77), pretrained="v1"), # ERROR (tinynn.converter.base) Unsupported ops: aten::logical_not
lambda: OpenClipVisual("ViT-B-32", (1, 3, 224, 224), pretrained="laion2b_e16"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipTextual("ViT-B-32", (1, 77), pretrained="laion2b_e16"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipVisual("ViT-B-32", (1, 3, 224, 224), pretrained="laion400m_e31"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipTextual("ViT-B-32", (1, 77), pretrained="laion400m_e31"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipVisual("ViT-B-32", (1, 3, 224, 224), pretrained="laion400m_e32"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipTextual("ViT-B-32", (1, 77), pretrained="laion400m_e32"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipVisual("ViT-B-32", (1, 3, 224, 224), pretrained="laion2b-s34b-b79k"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipTextual("ViT-B-32", (1, 77), pretrained="laion2b-s34b-b79k"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipVisual("ViT-B-16", (1, 3, 224, 224), pretrained="laion400m_e31"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipTextual("ViT-B-16", (1, 77), pretrained="laion400m_e31"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipVisual("ViT-B-16", (1, 3, 224, 224), pretrained="laion400m_e32"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipTextual("ViT-B-16", (1, 77), pretrained="laion400m_e32"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipVisual("ViT-B-16-plus-240", (1, 3, 224, 224), pretrained="laion400m_e31"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipTextual("ViT-B-16-plus-240", (1, 77), pretrained="laion400m_e31"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipVisual("ViT-L-14", (1, 3, 224, 224), pretrained="laion400m_e31"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipTextual("ViT-L-14", (1, 77), pretrained="laion400m_e31"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipVisual("ViT-L-14", (1, 3, 224, 224), pretrained="laion400m_e32"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipTextual("ViT-L-14", (1, 77), pretrained="laion400m_e32"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipVisual("ViT-L-14", (1, 3, 224, 224), pretrained="laion2b-s32b-b82k"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipTextual("ViT-L-14", (1, 77), pretrained="laion2b-s32b-b82k"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipVisual("ViT-H-14", (1, 3, 224, 224), pretrained="laion2b-s32b-b79k"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipTextual("ViT-H-14", (1, 77), pretrained="laion2b-s32b-b79k"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipVisual("ViT-g-14", (1, 3, 224, 224), pretrained="laion2b-s12b-b42k"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipTextual("ViT-g-14", (1, 77), pretrained="laion2b-s12b-b42k"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipVisual("XLM-Roberta-Large-Vit-B-16Plus", (1, 3, 240, 240)), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipVisual("XLM-Roberta-Large-ViT-H-14", (1, 3, 224, 224), pretrained="frozen_laion5b_s13b_b90k"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipVisual("nllb-clip-base-siglip", (1, 3, 384, 384), pretrained="v1"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipVisual("nllb-clip-large-siglip", (1, 3, 384, 384), pretrained="v1"), # ERROR (tinynn.converter.base) Unsupported ops: aten::erf
lambda: OpenClipVisual("RN50", (1, 3, 224, 224), pretrained="yfcc15m"), # BatchNorm operation with mean/var output is not implemented
lambda: OpenClipTextual("RN50", (1, 77), pretrained="yfcc15m"), # BatchNorm operation with mean/var output is not implemented
lambda: OpenClipVisual("RN50", (1, 3, 224, 224), pretrained="cc12m"), # BatchNorm operation with mean/var output is not implemented
lambda: OpenClipTextual("RN50", (1, 77), pretrained="cc12m"), # BatchNorm operation with mean/var output is not implemented
lambda: MClipTextual("XLM-Roberta-Large-Vit-L-14", (1, 77)), # Expected normalized_shape to be at least 1-dimensional, i.e., containing at least one element, but got normalized_shape = []
lambda: MClipTextual("XLM-Roberta-Large-Vit-B-16Plus", (1, 77)), # Expected normalized_shape to be at least 1-dimensional, i.e., containing at least one element, but got normalized_shape = []
lambda: MClipTextual("LABSE-Vit-L-14", (1, 77)), # Expected normalized_shape to be at least 1-dimensional, i.e., containing at least one element, but got normalized_shape = []
lambda: OpenClipTextual("XLM-Roberta-Large-ViT-H-14", (1, 77), pretrained="frozen_laion5b_s13b_b90k"), # Expected normalized_shape to be at least 1-dimensional, i.e., containing at least one element, but got normalized_shape = []
]
succeeded: list[Callable[[], ExportBase]] = [
lambda: OpenClipVisual("ViT-B-32", (1, 3, 224, 224), pretrained="openai"),
lambda: OpenClipTextual("ViT-B-32", (1, 77), pretrained="openai"),
lambda: OpenClipVisual("ViT-B-16", (1, 3, 224, 224), pretrained="openai"),
lambda: OpenClipTextual("ViT-B-16", (1, 77), pretrained="openai"),
lambda: OpenClipVisual("ViT-L-14", (1, 3, 224, 224), pretrained="openai"),
lambda: OpenClipTextual("ViT-L-14", (1, 77), pretrained="openai"),
lambda: OpenClipVisual("ViT-L-14-336", (1, 3, 336, 336), pretrained="openai"),
lambda: OpenClipTextual("ViT-L-14-336", (1, 77), pretrained="openai"),
lambda: OpenClipVisual("RN50", (1, 3, 224, 224), pretrained="openai"),
lambda: OpenClipTextual("RN50", (1, 77), pretrained="openai"),
lambda: OpenClipTextual("ViT-H-14-quickgelu", (1, 77), pretrained="dfn5b"),
lambda: OpenClipTextual("ViT-H-14-378-quickgelu", (1, 77), pretrained="dfn5b"),
lambda: OpenClipVisual("XLM-Roberta-Large-Vit-L-14", (1, 3, 224, 224)),
lambda: OpenClipVisual("XLM-Roberta-Large-Vit-B-32", (1, 3, 224, 224)),
lambda: ArcFace("buffalo_s", (1, 3, 112, 112), optimization_level=3),
lambda: RetinaFace("buffalo_s", (1, 3, 640, 640), optimization_level=3),
lambda: ArcFace("buffalo_m", (1, 3, 112, 112), optimization_level=3),
lambda: RetinaFace("buffalo_m", (1, 3, 640, 640), optimization_level=3),
lambda: ArcFace("buffalo_l", (1, 3, 112, 112), optimization_level=3),
lambda: RetinaFace("buffalo_l", (1, 3, 640, 640), optimization_level=3),
lambda: ArcFace("antelopev2", (1, 3, 112, 112), optimization_level=3),
lambda: RetinaFace("antelopev2", (1, 3, 640, 640), optimization_level=3),
]
models: list[Callable[[], ExportBase]] = [*failed, *succeeded]
for _model in succeeded:
model = _model().to(device)
try:
relative_path = os.path.join(model.task, "model.armnn")
output_path = os.path.join("output", model.model_name, relative_path)
model.to_armnn(output_path)
upload_file(path_or_fileobj=output_path, path_in_repo=relative_path, repo_id=model.repo_name)
if device == torch.device("cuda"):
model.half()
relative_path = os.path.join(model.task, "fp16", "model.armnn")
output_path = os.path.join("output", model.model_name, relative_path)
model.to_armnn(output_path)
upload_file(path_or_fileobj=output_path, path_in_repo=relative_path, repo_id=model.repo_name)
except Exception as exc:
print(f"Failed to export {model.model_name} ({model.task}): {exc}")
if __name__ == "__main__":
with torch.no_grad():
main()

View file

@ -19,37 +19,44 @@ _MCLIP_TO_OPENCLIP = {
}
def forward(self: MultilingualCLIP, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
embs = self.transformer(input_ids, attention_mask)[0]
embs = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None]
embs = self.LinearTransformation(embs)
return torch.nn.functional.normalize(embs, dim=-1)
# unfortunately need to monkeypatch for tracing to work here
# otherwise it hits the 2GiB protobuf serialization limit
MultilingualCLIP.forward = forward
def to_torchscript(model_name: str) -> torch.jit.ScriptModule:
with tempfile.TemporaryDirectory() as tmpdir:
model = MultilingualCLIP.from_pretrained(model_name, cache_dir=tmpdir)
model.eval()
for param in model.parameters():
param.requires_grad_(False)
return model
def to_onnx(
model_name: str,
output_dir_visual: Path | str,
output_dir_textual: Path | str,
) -> None:
textual_path = get_model_path(output_dir_textual)
with tempfile.TemporaryDirectory() as tmpdir:
model = MultilingualCLIP.from_pretrained(model_name, cache_dir=tmpdir)
AutoTokenizer.from_pretrained(model_name).save_pretrained(output_dir_textual)
model = to_torchscript(model_name)
AutoTokenizer.from_pretrained(model_name).save_pretrained(output_dir_textual)
for param in model.parameters():
param.requires_grad_(False)
export_text_encoder(model, textual_path)
openclip_to_onnx(_MCLIP_TO_OPENCLIP[model_name], output_dir_visual)
optimize(textual_path)
_text_encoder_to_onnx(model, textual_path)
openclip_to_onnx(_MCLIP_TO_OPENCLIP[model_name], output_dir_visual)
optimize(textual_path)
def export_text_encoder(model: MultilingualCLIP, output_path: Path | str) -> None:
def _text_encoder_to_onnx(model: MultilingualCLIP, output_path: Path | str) -> None:
output_path = Path(output_path)
def forward(self: MultilingualCLIP, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
embs = self.transformer(input_ids, attention_mask)[0]
embs = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None]
embs = self.LinearTransformation(embs)
return torch.nn.functional.normalize(embs, dim=-1)
# unfortunately need to monkeypatch for tracing to work here
# otherwise it hits the 2GiB protobuf serialization limit
MultilingualCLIP.forward = forward
args = (torch.ones(1, 77, dtype=torch.int32), torch.ones(1, 77, dtype=torch.int32))
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)

View file

@ -26,6 +26,17 @@ class OpenCLIPModelConfig:
self.sequence_length = open_clip_cfg["text_cfg"]["context_length"]
def to_torchscript(model_name: str) -> torch.jit.ScriptModule:
with tempfile.TemporaryDirectory() as tmpdir:
model = MultilingualCLIP.from_pretrained(model_name, cache_dir=tmpdir)
model.eval()
for param in model.parameters():
param.requires_grad_(False)
return model
def to_onnx(
model_cfg: OpenCLIPModelConfig,
output_dir_visual: Path | str | None = None,
@ -51,7 +62,7 @@ def to_onnx(
save_config(open_clip.get_model_preprocess_cfg(model), output_dir_visual / "preprocess_cfg.json")
save_config(text_vision_cfg, output_dir_visual.parent / "config.json")
export_image_encoder(model, model_cfg, visual_path)
_image_encoder_to_onnx(model, model_cfg, visual_path)
optimize(visual_path)
@ -61,11 +72,11 @@ def to_onnx(
tokenizer_name = text_vision_cfg["text_cfg"].get("hf_tokenizer_name", "openai/clip-vit-base-patch32")
AutoTokenizer.from_pretrained(tokenizer_name).save_pretrained(output_dir_textual)
export_text_encoder(model, model_cfg, textual_path)
_text_encoder_to_onnx(model, model_cfg, textual_path)
optimize(textual_path)
def export_image_encoder(model: open_clip.CLIP, model_cfg: OpenCLIPModelConfig, output_path: Path | str) -> None:
def _image_encoder_to_onnx(model: open_clip.CLIP, model_cfg: OpenCLIPModelConfig, output_path: Path | str) -> None:
output_path = Path(output_path)
def encode_image(image: torch.Tensor) -> torch.Tensor:
@ -89,7 +100,7 @@ def export_image_encoder(model: open_clip.CLIP, model_cfg: OpenCLIPModelConfig,
)
def export_text_encoder(model: open_clip.CLIP, model_cfg: OpenCLIPModelConfig, output_path: Path | str) -> None:
def _text_encoder_to_onnx(model: open_clip.CLIP, model_cfg: OpenCLIPModelConfig, output_path: Path | str) -> None:
output_path = Path(output_path)
def encode_text(text: torch.Tensor) -> torch.Tensor: