1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-01 08:31:59 +00:00
immich/machine-learning/app/main.py
Zeeshan Khan 34201be74c
feat(ml) backend takes image over HTTP (#2783)
* using pydantic BaseSetting

* ML API takes image file as input

* keeping image in memory

* reducing duplicate code

* using bytes instead of UploadFile & other small code improvements

* removed form-multipart, using HTTP body

* format code

---------

Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
2023-06-17 22:49:19 -05:00

133 lines
3.5 KiB
Python

import os
import io
from typing import Any
from cache import ModelCache
from schemas import (
EmbeddingResponse,
FaceResponse,
TagResponse,
MessageResponse,
TextModelRequest,
TextResponse,
)
import uvicorn
from PIL import Image
from fastapi import FastAPI, HTTPException, Depends, Body
from models import get_model, run_classification, run_facial_recognition
from config import settings
_model_cache = None
app = FastAPI()
@app.on_event("startup")
async def startup_event() -> None:
global _model_cache
_model_cache = ModelCache(ttl=settings.model_ttl, revalidate=True)
models = [
(settings.classification_model, "image-classification"),
(settings.clip_image_model, "clip"),
(settings.clip_text_model, "clip"),
(settings.facial_recognition_model, "facial-recognition"),
]
# Get all models
for model_name, model_type in models:
if settings.eager_startup:
await _model_cache.get_cached_model(model_name, model_type)
else:
get_model(model_name, model_type)
def dep_model_cache():
if _model_cache is None:
raise HTTPException(status_code=500, detail="Unable to load model.")
def dep_input_image(image: bytes = Body(...)) -> Image:
return Image.open(io.BytesIO(image))
@app.get("/", response_model=MessageResponse)
async def root() -> dict[str, str]:
return {"message": "Immich ML"}
@app.get("/ping", response_model=TextResponse)
def ping() -> str:
return "pong"
@app.post(
"/image-classifier/tag-image",
response_model=TagResponse,
status_code=200,
dependencies=[Depends(dep_model_cache)],
)
async def image_classification(
image: Image = Depends(dep_input_image)
) -> list[str]:
try:
model = await _model_cache.get_cached_model(
settings.classification_model, "image-classification"
)
labels = run_classification(model, image, settings.min_tag_score)
except Exception as ex:
raise HTTPException(status_code=500, detail=str(ex))
else:
return labels
@app.post(
"/sentence-transformer/encode-image",
response_model=EmbeddingResponse,
status_code=200,
dependencies=[Depends(dep_model_cache)],
)
async def clip_encode_image(
image: Image = Depends(dep_input_image)
) -> list[float]:
model = await _model_cache.get_cached_model(settings.clip_image_model, "clip")
embedding = model.encode(image).tolist()
return embedding
@app.post(
"/sentence-transformer/encode-text",
response_model=EmbeddingResponse,
status_code=200,
dependencies=[Depends(dep_model_cache)],
)
async def clip_encode_text(
payload: TextModelRequest
) -> list[float]:
model = await _model_cache.get_cached_model(settings.clip_text_model, "clip")
embedding = model.encode(payload.text).tolist()
return embedding
@app.post(
"/facial-recognition/detect-faces",
response_model=FaceResponse,
status_code=200,
dependencies=[Depends(dep_model_cache)],
)
async def facial_recognition(
image: bytes = Body(...),
) -> list[dict[str, Any]]:
model = await _model_cache.get_cached_model(
settings.facial_recognition_model, "facial-recognition"
)
faces = run_facial_recognition(model, image)
return faces
if __name__ == "__main__":
is_dev = os.getenv("NODE_ENV") == "development"
uvicorn.run(
"main:app",
host=settings.host,
port=settings.port,
reload=is_dev,
workers=settings.workers,
)