mirror of
https://github.com/immich-app/immich.git
synced 2024-12-29 15:11:58 +00:00
handle gather at the end
This commit is contained in:
parent
1ad348c407
commit
3d62011ae3
1 changed files with 77 additions and 40 deletions
|
@ -10,19 +10,19 @@ from huggingface_hub import snapshot_download
|
|||
from onnx.shape_inference import infer_shapes_path
|
||||
from huggingface_hub import login, upload_file
|
||||
import onnx2tf
|
||||
from itertools import chain
|
||||
import numpy as np
|
||||
import onnxsim
|
||||
|
||||
# i can explain
|
||||
# armnn only supports up to 4d tranposes, but the model has a 5d transpose due to a redundant unsqueeze
|
||||
# this function folds the unsqueeze+transpose+squeeze into a single 4d transpose
|
||||
# it also switches from gather ops to slices since armnn doesn't support 3d gather
|
||||
# it also switches from gather ops to slices since armnn has different dimension semantics for gathers
|
||||
def onnx_transpose_4d(model_path: str):
|
||||
proto = onnx.load(model_path)
|
||||
graph = import_onnx(proto)
|
||||
|
||||
gather_idx = 1
|
||||
squeeze_idx = 1
|
||||
for node in graph.nodes:
|
||||
for link1 in node.outputs:
|
||||
if "Unsqueeze" in link1.name:
|
||||
|
@ -48,6 +48,7 @@ def onnx_transpose_4d(model_path: str):
|
|||
node.outputs = [link2]
|
||||
if "Gather" in link4.name:
|
||||
for node4 in link4.outputs:
|
||||
axis = node1.attrs.get("axis", 0)
|
||||
index = node4.inputs[1].values
|
||||
slice_link = Variable(
|
||||
f"onnx::Slice_123{gather_idx}",
|
||||
|
@ -60,11 +61,15 @@ def onnx_transpose_4d(model_path: str):
|
|||
link3,
|
||||
Constant(
|
||||
f"SliceStart_123{gather_idx}",
|
||||
np.array([index, 0, 0, 0]),
|
||||
np.array([index]),
|
||||
),
|
||||
Constant(
|
||||
f"SliceEnd_123{gather_idx}",
|
||||
np.array([index + 1] + link3.shape[1:]),
|
||||
np.array([index + 1]),
|
||||
),
|
||||
Constant(
|
||||
f"SliceAxis_123{gather_idx}",
|
||||
np.array([axis]),
|
||||
),
|
||||
],
|
||||
outputs=[slice_link],
|
||||
|
@ -80,6 +85,59 @@ def onnx_transpose_4d(model_path: str):
|
|||
node5.inputs[idx] = slice_link
|
||||
except ValueError:
|
||||
pass
|
||||
elif node.op == "LayerNormalization":
|
||||
for node1 in link1.outputs:
|
||||
if node1.op == "Gather":
|
||||
for link2 in node1.outputs:
|
||||
for node2 in link2.outputs:
|
||||
axis = node1.attrs.get("axis", 0)
|
||||
index = node1.inputs[1].values
|
||||
slice_link = Variable(
|
||||
f"onnx::Slice_123{gather_idx}",
|
||||
dtype=link2.dtype,
|
||||
shape=[1] + link2.shape,
|
||||
)
|
||||
slice_node = Node(
|
||||
op="Slice",
|
||||
inputs=[
|
||||
node1.inputs[0],
|
||||
Constant(
|
||||
f"SliceStart_123{gather_idx}",
|
||||
np.array([index]),
|
||||
),
|
||||
Constant(
|
||||
f"SliceEnd_123{gather_idx}",
|
||||
np.array([index + 1]),
|
||||
),
|
||||
Constant(
|
||||
f"SliceAxis_123{gather_idx}",
|
||||
np.array([axis]),
|
||||
),
|
||||
],
|
||||
outputs=[slice_link],
|
||||
name=f"Slice_123{gather_idx}",
|
||||
)
|
||||
graph.nodes.append(slice_node)
|
||||
gather_idx += 1
|
||||
|
||||
squeeze_link = Variable(
|
||||
f"onnx::Squeeze_123{squeeze_idx}",
|
||||
dtype=link2.dtype,
|
||||
shape=link2.shape,
|
||||
)
|
||||
squeeze_node = Node(
|
||||
op="Squeeze",
|
||||
inputs=[slice_link, Constant(f"SqueezeAxis_123{squeeze_idx}",np.array([0]),)],
|
||||
outputs=[squeeze_link],
|
||||
name=f"Squeeze_123{squeeze_idx}",
|
||||
)
|
||||
graph.nodes.append(squeeze_node)
|
||||
squeeze_idx += 1
|
||||
try:
|
||||
idx = node2.inputs.index(link2)
|
||||
node2.inputs[idx] = squeeze_link
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
graph.cleanup(remove_unused_node_outputs=True, recurse_subgraphs=True, recurse_functions=True)
|
||||
graph.toposort()
|
||||
|
@ -149,9 +207,10 @@ class ExportBase:
|
|||
os.makedirs(static_dir, exist_ok=True)
|
||||
|
||||
static_path = os.path.join(static_dir, "model.onnx")
|
||||
print(f"Making {self.model_name} ({self.task}) static")
|
||||
onnx_make_fixed(onnx_path_original, static_path, self.input_shape)
|
||||
onnx_transpose_4d(static_path)
|
||||
if not os.path.isfile(static_path):
|
||||
print(f"Making {self.model_name} ({self.task}) static")
|
||||
onnx_make_fixed(onnx_path_original, static_path, self.input_shape)
|
||||
onnx_transpose_4d(static_path)
|
||||
static_model = onnx.load_model(static_path)
|
||||
self.inputs = [input_.name for input_ in static_model.graph.input]
|
||||
self.outputs = [output_.name for output_ in static_model.graph.output]
|
||||
|
@ -181,50 +240,28 @@ class ExportBase:
|
|||
armnn_fp32 = os.path.join(output_dir, "model.armnn")
|
||||
armnn_fp16 = os.path.join(fp16_dir, "model.armnn")
|
||||
|
||||
input_tensors = list(chain.from_iterable(("-i", input_) for input_ in self.inputs)),
|
||||
output_tensors = list(chain.from_iterable(("-o", output_) for output_ in self.outputs)),
|
||||
print(f"{input_tensors=}")
|
||||
print(f"{output_tensors=}")
|
||||
args = [
|
||||
"./armnnconverter",
|
||||
"-f",
|
||||
"tflite-binary",
|
||||
"-m",
|
||||
tflite_fp32,
|
||||
"-p",
|
||||
armnn_fp32,
|
||||
]
|
||||
for input_ in self.inputs:
|
||||
args.extend(["-i", input_])
|
||||
for output_ in self.outputs:
|
||||
args.extend(["-o", output_])
|
||||
|
||||
print(f"Exporting {self.model_name} ({self.task}) to ARM NN with fp32 precision")
|
||||
subprocess.run(
|
||||
args,
|
||||
capture_output=True,
|
||||
)
|
||||
print(f"Finished exporting {self.name} ({self.task}) with fp32 precision")
|
||||
|
||||
args = [
|
||||
"./armnnconverter",
|
||||
"-f",
|
||||
"tflite-binary",
|
||||
"-m",
|
||||
tflite_fp16,
|
||||
"-p",
|
||||
armnn_fp16,
|
||||
]
|
||||
for input_ in self.inputs:
|
||||
args.extend(["-i", input_])
|
||||
for output_ in self.outputs:
|
||||
args.extend(["-o", output_])
|
||||
|
||||
fp32_args = args.copy()
|
||||
fp32_args.extend(["-m", tflite_fp32, "-p", tflite_fp32])
|
||||
|
||||
print(f"Exporting {self.model_name} ({self.task}) to ARM NN with fp32 precision")
|
||||
subprocess.run(fp32_args, capture_output=True)
|
||||
print(f"Finished exporting {self.name} ({self.task}) with fp32 precision")
|
||||
|
||||
fp16_args = args.copy()
|
||||
fp32_args.extend(["-m", tflite_fp16, "-p", tflite_fp16])
|
||||
|
||||
print(f"Exporting {self.model_name} ({self.task}) to ARM NN with fp16 precision")
|
||||
subprocess.run(
|
||||
args,
|
||||
capture_output=True,
|
||||
)
|
||||
subprocess.run(fp16_args, capture_output=True)
|
||||
print(f"Finished exporting {self.name} ({self.task}) with fp16 precision")
|
||||
|
||||
return armnn_fp32, armnn_fp16
|
||||
|
|
Loading…
Reference in a new issue