1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2024-12-29 15:11:58 +00:00

gather -> slice

This commit is contained in:
mertalev 2024-07-07 18:29:18 -04:00
parent 5dae920ac6
commit 1ad348c407
No known key found for this signature in database
GPG key ID: 9181CD92C0A1C5E3

View file

@ -4,22 +4,27 @@ import subprocess
from typing import Callable, ClassVar
import onnx
from onnx_graphsurgeon import import_onnx, export_onnx
from onnx_graphsurgeon import Constant, Node, Variable, import_onnx, export_onnx
from onnxruntime.tools.onnx_model_utils import fix_output_shapes, make_input_shape_fixed
from huggingface_hub import snapshot_download
from onnx.shape_inference import infer_shapes_path
from huggingface_hub import login, upload_file
import onnx2tf
from itertools import chain
import numpy as np
import onnxsim
# i can explain
# armnn only supports up to 4d tranposes, but the model has a 5d transpose due to a redundant unsqueeze
# this function folds the unsqueeze+transpose+squeeze into a single 4d transpose
# it also switches from gather ops to slices since armnn doesn't support 3d gather
def onnx_transpose_4d(model_path: str):
proto = onnx.load(model_path)
graph = import_onnx(proto)
gather_idx = 1
for node in graph.nodes:
for i, link1 in enumerate(node.outputs):
for link1 in node.outputs:
if "Unsqueeze" in link1.name:
for node1 in link1.outputs:
for link2 in node1.outputs:
@ -30,31 +35,87 @@ def onnx_transpose_4d(model_path: str):
link2.shape = link1.shape
for link3 in node2.outputs:
if "Squeeze" in link3.name:
link3.shape = [link3.shape[x] for x in [0, 1, 2, 4]]
for node3 in link3.outputs:
for link4 in node3.outputs:
link4.shape = [link3.shape[x] for x in [0, 1, 2, 4]]
for inputs in link4.inputs:
if inputs.name == node3.name:
i = link2.inputs.index(node1)
if i >= 0:
link2.inputs[i] = node
i = link4.inputs.index(node3)
if i >= 0:
link4.inputs[i] = node2
node.outputs = [link2]
node1.inputs = []
node1.outputs = []
node3.inputs = []
node3.outputs = []
link4.shape = link3.shape
try:
idx = link2.inputs.index(node1)
link2.inputs[idx] = node
except ValueError:
pass
node.outputs = [link2]
if "Gather" in link4.name:
for node4 in link4.outputs:
index = node4.inputs[1].values
slice_link = Variable(
f"onnx::Slice_123{gather_idx}",
dtype=link4.dtype,
shape=[1] + link3.shape[1:],
)
slice_node = Node(
op="Slice",
inputs=[
link3,
Constant(
f"SliceStart_123{gather_idx}",
np.array([index, 0, 0, 0]),
),
Constant(
f"SliceEnd_123{gather_idx}",
np.array([index + 1] + link3.shape[1:]),
),
],
outputs=[slice_link],
name=f"Slice_123{gather_idx}",
)
graph.nodes.append(slice_node)
gather_idx += 1
for link5 in node4.outputs:
for node5 in link5.outputs:
try:
idx = node5.inputs.index(link5)
node5.inputs[idx] = slice_link
except ValueError:
pass
graph.cleanup(remove_unused_node_outputs=True, recurse_subgraphs=True, recurse_functions=True)
graph.toposort()
graph.fold_constants()
updated = export_onnx(graph)
onnx.save(updated, model_path, save_as_external_data=True, all_tensors_to_one_file=False)
onnx.save(updated, model_path)
# infer_shapes_path(updated, check_type=True, strict_mode=False, data_prop=True)
# for some reason, reloading the model is necessary to apply the correct shape
proto = onnx.load(model_path)
graph = import_onnx(proto)
for node in graph.nodes:
if node.op == "Slice":
for link in node.outputs:
if "Slice_123" in link.name and link.shape[0] == 3:
link.shape[0] = 1
graph.cleanup(remove_unused_node_outputs=True, recurse_subgraphs=True, recurse_functions=True)
graph.toposort()
graph.fold_constants()
updated = export_onnx(graph)
onnx.save(updated, model_path)
infer_shapes_path(model_path, check_type=True, strict_mode=True, data_prop=True)
def onnx_make_fixed(input_path: str, output_path: str, input_shape: tuple[int, ...]):
simplified, success = onnxsim.simplify(input_path)
if not success:
raise RuntimeError(f"Failed to simplify {input_path}")
onnx.save(simplified, input_path)
infer_shapes_path(input_path, check_type=True, strict_mode=True, data_prop=True)
model = onnx.load_model(input_path)
make_input_shape_fixed(model.graph, model.graph.input[0].name, input_shape)
fix_output_shapes(model)
onnx.save(model, output_path, save_as_external_data=True, all_tensors_to_one_file=False)
infer_shapes_path(output_path, check_type=True, strict_mode=True, data_prop=True)
class ExportBase:
@ -73,29 +134,27 @@ class ExportBase:
self.nchw_transpose = False
self.input_shape = input_shape
self.pretrained = pretrained
def to_onnx_static(self) -> str:
cache_dir = os.path.join(os.environ["CACHE_DIR"], self.model_name)
task_path = os.path.join(cache_dir, self.task)
model_path = os.path.join(task_path, "model.onnx")
self.cache_dir = os.path.join(os.environ["CACHE_DIR"], self.model_name)
def download(self) -> str:
model_path = os.path.join(self.cache_dir, self.task, "model.onnx")
if not os.path.isfile(model_path):
print(f"Downloading {self.model_name}...")
snapshot_download(self.repo_name, cache_dir=cache_dir, local_dir=cache_dir)
static_dir = os.path.join(task_path, "static")
static_path = os.path.join(static_dir, "model.onnx")
snapshot_download(self.repo_name, cache_dir=self.cache_dir, local_dir=self.cache_dir, local_dir_use_symlinks=False)
return model_path
def to_onnx_static(self) -> str:
onnx_path_original = self.download()
static_dir = os.path.join(self.cache_dir, self.task, "static")
os.makedirs(static_dir, exist_ok=True)
if not os.path.isfile(static_path):
print(f"Making {self.model_name} ({self.task}) static")
infer_shapes_path(onnx_path_original, check_type=True, strict_mode=True, data_prop=True)
onnx_path_original = os.path.join(cache_dir, "model.onnx")
static_model = onnx.load_model(onnx_path_original)
make_input_shape_fixed(static_model.graph, static_model.graph.input[0].name, (1, 3, 224, 224))
fix_output_shapes(static_model)
onnx.save(static_model, static_path, save_as_external_data=True, all_tensors_to_one_file=False)
infer_shapes_path(static_path, check_type=True, strict_mode=True, data_prop=True)
onnx_transpose_4d(static_path)
static_path = os.path.join(static_dir, "model.onnx")
print(f"Making {self.model_name} ({self.task}) static")
onnx_make_fixed(onnx_path_original, static_path, self.input_shape)
onnx_transpose_4d(static_path)
static_model = onnx.load_model(static_path)
self.inputs = [input_.name for input_ in static_model.graph.input]
self.outputs = [output_.name for output_ in static_model.graph.output]
return static_path
def to_tflite(self, output_dir: str) -> tuple[str, str]:
@ -122,40 +181,48 @@ class ExportBase:
armnn_fp32 = os.path.join(output_dir, "model.armnn")
armnn_fp16 = os.path.join(fp16_dir, "model.armnn")
input_tensors = list(chain.from_iterable(("-i", input_) for input_ in self.inputs)),
output_tensors = list(chain.from_iterable(("-o", output_) for output_ in self.outputs)),
print(f"{input_tensors=}")
print(f"{output_tensors=}")
args = [
"./armnnconverter",
"-f",
"tflite-binary",
"-m",
tflite_fp32,
"-p",
armnn_fp32,
]
for input_ in self.inputs:
args.extend(["-i", input_])
for output_ in self.outputs:
args.extend(["-o", output_])
print(f"Exporting {self.model_name} ({self.task}) to ARM NN with fp32 precision")
subprocess.run(
[
"./armnnconverter",
"-f",
"tflite-binary",
"-m",
tflite_fp32,
"-i",
"input_tensor",
"-o",
"output_tensor",
"-p",
armnn_fp32,
],
args,
capture_output=True,
)
print(f"Finished exporting {self.name} ({self.task}) with fp32 precision")
args = [
"./armnnconverter",
"-f",
"tflite-binary",
"-m",
tflite_fp16,
"-p",
armnn_fp16,
]
for input_ in self.inputs:
args.extend(["-i", input_])
for output_ in self.outputs:
args.extend(["-o", output_])
print(f"Exporting {self.model_name} ({self.task}) to ARM NN with fp16 precision")
subprocess.run(
[
"./armnnconverter",
"-f",
"tflite-binary",
"-m",
tflite_fp16,
"-i",
"input_tensor",
"-o",
"output_tensor",
"-p",
armnn_fp16,
],
args,
capture_output=True,
)
print(f"Finished exporting {self.name} ({self.task}) with fp16 precision")
@ -280,6 +347,7 @@ def main() -> None:
upload_file(path_or_fileobj=armnn_fp16, path_in_repo=relative_fp16, repo_id=model.repo_name)
except Exception as exc:
print(f"Failed to export {model.model_name} ({model.task}): {exc}")
raise exc
if __name__ == "__main__":