1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-07 20:36:48 +01:00
immich/machine-learning/app/main.py

131 lines
3.3 KiB
Python
Raw Normal View History

2023-05-17 19:07:17 +02:00
import os
from io import BytesIO
from typing import Any
import cv2
import numpy as np
import uvicorn
from fastapi import Body, Depends, FastAPI
from PIL import Image
from .config import settings
from .models.base import InferenceModel
from .models.cache import ModelCache
from .schemas import (
EmbeddingResponse,
FaceResponse,
MessageResponse,
ModelType,
TagResponse,
TextModelRequest,
TextResponse,
)
2023-05-17 19:07:17 +02:00
app = FastAPI()
2023-04-26 12:39:24 +02:00
def init_state() -> None:
app.state.model_cache = ModelCache(ttl=settings.model_ttl, revalidate=settings.model_ttl > 0)
async def load_models() -> None:
models = [
(settings.classification_model, ModelType.IMAGE_CLASSIFICATION),
(settings.clip_image_model, ModelType.CLIP),
(settings.clip_text_model, ModelType.CLIP),
(settings.facial_recognition_model, ModelType.FACIAL_RECOGNITION),
]
# Get all models
for model_name, model_type in models:
if settings.eager_startup:
await app.state.model_cache.get(model_name, model_type)
else:
InferenceModel.from_model_type(model_type, model_name)
@app.on_event("startup")
async def startup_event() -> None:
init_state()
await load_models()
def dep_pil_image(byte_image: bytes = Body(...)) -> Image.Image:
return Image.open(BytesIO(byte_image))
def dep_cv_image(byte_image: bytes = Body(...)) -> cv2.Mat:
byte_image_np = np.frombuffer(byte_image, np.uint8)
return cv2.imdecode(byte_image_np, cv2.IMREAD_COLOR)
@app.get("/", response_model=MessageResponse)
async def root() -> dict[str, str]:
2023-04-26 12:39:24 +02:00
return {"message": "Immich ML"}
@app.get("/ping", response_model=TextResponse)
def ping() -> str:
return "pong"
@app.post(
"/image-classifier/tag-image",
response_model=TagResponse,
status_code=200,
)
async def image_classification(
image: Image.Image = Depends(dep_pil_image),
) -> list[str]:
model = await app.state.model_cache.get(settings.classification_model, ModelType.IMAGE_CLASSIFICATION)
labels = model.predict(image)
return labels
2023-04-26 12:39:24 +02:00
@app.post(
"/sentence-transformer/encode-image",
response_model=EmbeddingResponse,
status_code=200,
)
async def clip_encode_image(
image: Image.Image = Depends(dep_pil_image),
) -> list[float]:
model = await app.state.model_cache.get(settings.clip_image_model, ModelType.CLIP)
embedding = model.predict(image)
return embedding
2023-04-26 12:39:24 +02:00
@app.post(
"/sentence-transformer/encode-text",
response_model=EmbeddingResponse,
status_code=200,
)
async def clip_encode_text(payload: TextModelRequest) -> list[float]:
model = await app.state.model_cache.get(settings.clip_text_model, ModelType.CLIP)
embedding = model.predict(payload.text)
return embedding
2023-04-26 12:39:24 +02:00
@app.post(
"/facial-recognition/detect-faces",
response_model=FaceResponse,
status_code=200,
)
async def facial_recognition(
image: cv2.Mat = Depends(dep_cv_image),
) -> list[dict[str, Any]]:
model = await app.state.model_cache.get(settings.facial_recognition_model, ModelType.FACIAL_RECOGNITION)
faces = model.predict(image)
return faces
if __name__ == "__main__":
is_dev = os.getenv("NODE_ENV") == "development"
uvicorn.run(
"app.main:app",
host=settings.host,
port=settings.port,
reload=is_dev,
workers=settings.workers,
)