1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-07 20:36:48 +01:00
immich/machine-learning/app/test_main.py

850 lines
36 KiB
Python
Raw Normal View History

import json
import os
from io import BytesIO
from pathlib import Path
from random import randint
from types import SimpleNamespace
from typing import Any, Callable
from unittest import mock
import cv2
import numpy as np
import onnxruntime as ort
import pytest
2024-06-20 20:13:18 +02:00
from fastapi import HTTPException
from fastapi.testclient import TestClient
from PIL import Image
from pytest import MonkeyPatch
from pytest_mock import MockerFixture
from app.main import load, preload_models
from app.models.clip.textual import MClipTextualEncoder, OpenClipTextualEncoder
from app.models.clip.visual import OpenClipVisualEncoder
from app.models.facial_recognition.detection import FaceDetector
from app.models.facial_recognition.recognition import FaceRecognizer
2024-06-25 18:00:24 +02:00
from app.sessions.ann import AnnSession
from app.sessions.ort import OrtSession
2024-06-25 18:00:24 +02:00
from .config import Settings, settings
from .models.base import InferenceModel
from .models.cache import ModelCache
from .schemas import ModelFormat, ModelTask, ModelType
class TestBase:
2024-06-25 18:00:24 +02:00
def test_sets_default_cache_dir(self) -> None:
encoder = OpenClipTextualEncoder("ViT-B-32__openai")
assert encoder.cache_dir == Path(settings.cache_folder) / "clip" / "ViT-B-32__openai"
def test_sets_cache_dir_kwarg(self) -> None:
cache_dir = Path("/test_cache")
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=cache_dir)
assert encoder.cache_dir == cache_dir
def test_sets_default_model_format(self, mocker: MockerFixture) -> None:
2024-06-25 18:00:24 +02:00
mocker.patch.object(settings, "ann", True)
mocker.patch("ann.ann.is_available", False)
encoder = OpenClipTextualEncoder("ViT-B-32__openai")
assert encoder.model_format == ModelFormat.ONNX
def test_sets_default_model_format_to_armnn_if_available(self, path: mock.Mock, mocker: MockerFixture) -> None:
2024-06-25 18:00:24 +02:00
mocker.patch.object(settings, "ann", True)
mocker.patch("ann.ann.is_available", True)
path.suffix = ".armnn"
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=path)
assert encoder.model_format == ModelFormat.ARMNN
def test_sets_model_format_kwarg(self, mocker: MockerFixture) -> None:
2024-06-25 18:00:24 +02:00
mocker.patch.object(settings, "ann", False)
mocker.patch("ann.ann.is_available", False)
encoder = OpenClipTextualEncoder("ViT-B-32__openai", model_format=ModelFormat.ARMNN)
2024-06-25 18:00:24 +02:00
assert encoder.model_format == ModelFormat.ARMNN
def test_casts_cache_dir_string_to_path(self) -> None:
cache_dir = "/test_cache"
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=cache_dir)
assert encoder.cache_dir == Path(cache_dir)
def test_clear_cache(self, rmtree: mock.Mock, path: mock.Mock, info: mock.Mock) -> None:
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=path)
encoder.clear_cache()
rmtree.assert_called_once_with(encoder.cache_dir)
info.assert_called_with(f"Cleared cache directory for model '{encoder.model_name}'.")
def test_clear_cache_warns_if_path_does_not_exist(
self, rmtree: mock.Mock, path: mock.Mock, warning: mock.Mock
) -> None:
path.return_value.exists.return_value = False
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=path)
encoder.clear_cache()
rmtree.assert_not_called()
warning.assert_called_once()
def test_clear_cache_raises_exception_if_vulnerable_to_symlink_attack(
self, rmtree: mock.Mock, path: mock.Mock
) -> None:
rmtree.avoids_symlink_attacks = False
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=path)
with pytest.raises(RuntimeError):
encoder.clear_cache()
rmtree.assert_not_called()
def test_clear_cache_replaces_file_with_dir_if_path_is_file(
self, rmtree: mock.Mock, path: mock.Mock, warning: mock.Mock
) -> None:
path.return_value.is_dir.return_value = False
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=path)
encoder.clear_cache()
rmtree.assert_not_called()
path.return_value.unlink.assert_called_once()
path.return_value.mkdir.assert_called_once()
warning.assert_called_once()
def test_download(self, snapshot_download: mock.Mock) -> None:
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir="/path/to/cache")
encoder.download()
snapshot_download.assert_called_once_with(
"immich-app/ViT-B-32__openai",
cache_dir=encoder.cache_dir,
local_dir=encoder.cache_dir,
local_dir_use_symlinks=False,
ignore_patterns=["*.armnn"],
)
def test_download_downloads_armnn_if_preferred_format(self, snapshot_download: mock.Mock) -> None:
encoder = OpenClipTextualEncoder("ViT-B-32__openai", model_format=ModelFormat.ARMNN)
2024-06-25 18:00:24 +02:00
encoder.download()
snapshot_download.assert_called_once_with(
"immich-app/ViT-B-32__openai",
cache_dir=encoder.cache_dir,
local_dir=encoder.cache_dir,
local_dir_use_symlinks=False,
ignore_patterns=[],
)
def test_throws_exception_if_model_path_does_not_exist(
self, snapshot_download: mock.Mock, ort_session: mock.Mock, path: mock.Mock
) -> None:
path.return_value.__truediv__.return_value.__truediv__.return_value.is_file.return_value = False
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=path)
with pytest.raises(FileNotFoundError):
encoder.load()
snapshot_download.assert_called_once()
ort_session.assert_not_called()
2024-06-25 18:00:24 +02:00
@pytest.mark.usefixtures("ort_session")
class TestOrtSession:
CPU_EP = ["CPUExecutionProvider"]
CUDA_EP = ["CUDAExecutionProvider", "CPUExecutionProvider"]
OV_EP = ["OpenVINOExecutionProvider", "CPUExecutionProvider"]
CUDA_EP_OUT_OF_ORDER = ["CPUExecutionProvider", "CUDAExecutionProvider"]
TRT_EP = ["TensorrtExecutionProvider", "CUDAExecutionProvider", "CPUExecutionProvider"]
@pytest.mark.providers(CPU_EP)
def test_sets_cpu_provider(self, providers: list[str]) -> None:
2024-06-25 18:00:24 +02:00
session = OrtSession("ViT-B-32__openai")
2024-06-25 18:00:24 +02:00
assert session.providers == self.CPU_EP
@pytest.mark.providers(CUDA_EP)
def test_sets_cuda_provider_if_available(self, providers: list[str]) -> None:
2024-06-25 18:00:24 +02:00
session = OrtSession("ViT-B-32__openai")
2024-06-25 18:00:24 +02:00
assert session.providers == self.CUDA_EP
2024-06-25 18:00:24 +02:00
@pytest.mark.ov_device_ids(["GPU.0", "CPU"])
@pytest.mark.providers(OV_EP)
2024-06-25 18:00:24 +02:00
def test_sets_openvino_provider_if_available(self, providers: list[str], ov_device_ids: list[str]) -> None:
session = OrtSession("ViT-B-32__openai")
2024-06-25 18:00:24 +02:00
assert session.providers == self.OV_EP
2024-06-25 18:00:24 +02:00
@pytest.mark.ov_device_ids(["CPU"])
@pytest.mark.providers(OV_EP)
2024-06-25 18:00:24 +02:00
def test_avoids_openvino_if_gpu_not_available(self, providers: list[str], ov_device_ids: list[str]) -> None:
session = OrtSession("ViT-B-32__openai")
2024-06-25 18:00:24 +02:00
assert session.providers == self.CPU_EP
@pytest.mark.providers(CUDA_EP_OUT_OF_ORDER)
def test_sets_providers_in_correct_order(self, providers: list[str]) -> None:
2024-06-25 18:00:24 +02:00
session = OrtSession("ViT-B-32__openai")
2024-06-25 18:00:24 +02:00
assert session.providers == self.CUDA_EP
@pytest.mark.providers(TRT_EP)
def test_ignores_unsupported_providers(self, providers: list[str]) -> None:
2024-06-25 18:00:24 +02:00
session = OrtSession("ViT-B-32__openai")
2024-06-25 18:00:24 +02:00
assert session.providers == self.CUDA_EP
def test_sets_provider_kwarg(self) -> None:
providers = ["CUDAExecutionProvider"]
2024-06-25 18:00:24 +02:00
session = OrtSession("ViT-B-32__openai", providers=providers)
2024-06-25 18:00:24 +02:00
assert session.providers == providers
2024-06-25 18:00:24 +02:00
@pytest.mark.ov_device_ids(["GPU.0", "CPU"])
def test_sets_default_provider_options(self, ov_device_ids: list[str]) -> None:
model_path = "/cache/ViT-B-32__openai/model.onnx"
session = OrtSession(model_path, providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"])
2024-06-25 18:00:24 +02:00
assert session.provider_options == [
{"device_type": "GPU_FP32", "cache_dir": "/cache/ViT-B-32__openai/openvino"},
{"arena_extend_strategy": "kSameAsRequested"},
]
def test_sets_provider_options_kwarg(self) -> None:
2024-06-25 18:00:24 +02:00
session = OrtSession(
"ViT-B-32__openai",
providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"],
provider_options=[],
)
2024-06-25 18:00:24 +02:00
assert session.provider_options == []
def test_sets_default_sess_options(self) -> None:
2024-06-25 18:00:24 +02:00
session = OrtSession("ViT-B-32__openai")
2024-06-25 18:00:24 +02:00
assert session.sess_options.execution_mode == ort.ExecutionMode.ORT_SEQUENTIAL
assert session.sess_options.inter_op_num_threads == 1
assert session.sess_options.intra_op_num_threads == 2
assert session.sess_options.enable_cpu_mem_arena is False
def test_sets_default_sess_options_does_not_set_threads_if_non_cpu_and_default_threads(self) -> None:
2024-06-25 18:00:24 +02:00
session = OrtSession("ViT-B-32__openai", providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
2024-06-25 18:00:24 +02:00
assert session.sess_options.inter_op_num_threads == 0
assert session.sess_options.intra_op_num_threads == 0
def test_sets_default_sess_options_sets_threads_if_non_cpu_and_set_threads(self, mocker: MockerFixture) -> None:
2024-06-25 18:00:24 +02:00
mock_settings = mocker.patch("app.sessions.ort.settings", autospec=True)
mock_settings.model_inter_op_threads = 2
mock_settings.model_intra_op_threads = 4
2024-06-25 18:00:24 +02:00
session = OrtSession("ViT-B-32__openai", providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
2024-06-25 18:00:24 +02:00
assert session.sess_options.inter_op_num_threads == 2
assert session.sess_options.intra_op_num_threads == 4
def test_sets_sess_options_kwarg(self) -> None:
sess_options = ort.SessionOptions()
2024-06-25 18:00:24 +02:00
session = OrtSession(
"ViT-B-32__openai",
providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"],
provider_options=[],
sess_options=sess_options,
)
2024-06-25 18:00:24 +02:00
assert sess_options is session.sess_options
2024-06-25 18:00:24 +02:00
class TestAnnSession:
def test_creates_ann_session(self, ann_session: mock.Mock, info: mock.Mock) -> None:
model_path = mock.MagicMock(spec=Path)
cache_dir = mock.MagicMock(spec=Path)
2024-06-25 18:00:24 +02:00
AnnSession(model_path, cache_dir)
2024-06-25 18:00:24 +02:00
ann_session.assert_called_once_with(tuning_level=3, tuning_file=(cache_dir / "gpu-tuning.ann").as_posix())
ann_session.return_value.load.assert_called_once_with(
model_path.as_posix(), cached_network_path=model_path.with_suffix(".anncache").as_posix()
)
info.assert_has_calls(
[
mock.call("Loading ANN model %s ...", model_path),
mock.call("Loaded ANN model with ID %d", ann_session.return_value.load.return_value),
]
)
2024-06-25 18:00:24 +02:00
def test_get_inputs(self, ann_session: mock.Mock) -> None:
ann_session.return_value.load.return_value = 123
ann_session.return_value.input_shapes = {123: [(1, 3, 224, 224)]}
session = AnnSession(Path("ViT-B-32__openai"))
2024-06-25 18:00:24 +02:00
inputs = session.get_inputs()
2024-06-25 18:00:24 +02:00
assert len(inputs) == 1
assert inputs[0].name is None
assert inputs[0].shape == (1, 3, 224, 224)
2024-06-25 18:00:24 +02:00
def test_get_outputs(self, ann_session: mock.Mock) -> None:
ann_session.return_value.load.return_value = 123
ann_session.return_value.output_shapes = {123: [(1, 3, 224, 224)]}
session = AnnSession(Path("ViT-B-32__openai"))
2024-06-25 18:00:24 +02:00
outputs = session.get_outputs()
2024-06-25 18:00:24 +02:00
assert len(outputs) == 1
assert outputs[0].name is None
assert outputs[0].shape == (1, 3, 224, 224)
2024-06-25 18:00:24 +02:00
def test_run(self, ann_session: mock.Mock, mocker: MockerFixture) -> None:
ann_session.return_value.load.return_value = 123
np_spy = mocker.spy(np, "ascontiguousarray")
session = AnnSession(Path("ViT-B-32__openai"))
[input1, input2] = [np.random.rand(1, 3, 224, 224).astype(np.float32) for _ in range(2)]
input_feed = {"input.1": input1, "input.2": input2}
2024-06-25 18:00:24 +02:00
session.run(None, input_feed)
2024-06-25 18:00:24 +02:00
ann_session.return_value.execute.assert_called_once_with(123, [input1, input2])
np_spy.call_count == 2
np_spy.assert_has_calls([mock.call(input1), mock.call(input2)])
class TestCLIP:
embedding = np.random.rand(512).astype(np.float32)
cache_dir = Path("test_cache")
def test_basic_image(
self,
pil_image: Image.Image,
mocker: MockerFixture,
clip_model_cfg: dict[str, Any],
clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
) -> None:
mocker.patch.object(OpenClipVisualEncoder, "download")
mocker.patch.object(OpenClipVisualEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(OpenClipVisualEncoder, "preprocess_cfg", clip_preprocess_cfg)
mocked = mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
mocked.run.return_value = [[self.embedding]]
clip_encoder = OpenClipVisualEncoder("ViT-B-32__openai", cache_dir="test_cache")
embedding = clip_encoder.predict(pil_image)
2023-11-13 20:37:39 +01:00
assert isinstance(embedding, np.ndarray)
assert embedding.shape[0] == clip_model_cfg["embed_dim"]
assert embedding.dtype == np.float32
mocked.run.assert_called_once()
def test_basic_text(
self,
mocker: MockerFixture,
clip_model_cfg: dict[str, Any],
clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
) -> None:
mocker.patch.object(OpenClipTextualEncoder, "download")
mocker.patch.object(OpenClipTextualEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(OpenClipTextualEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
mocked = mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
mocked.run.return_value = [[self.embedding]]
mocker.patch("app.models.clip.textual.Tokenizer.from_file", autospec=True)
clip_encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir="test_cache")
embedding = clip_encoder.predict("test search query")
2023-11-13 20:37:39 +01:00
assert isinstance(embedding, np.ndarray)
assert embedding.shape[0] == clip_model_cfg["embed_dim"]
assert embedding.dtype == np.float32
mocked.run.assert_called_once()
def test_openclip_tokenizer(
self,
mocker: MockerFixture,
clip_model_cfg: dict[str, Any],
clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
) -> None:
mocker.patch.object(OpenClipTextualEncoder, "download")
mocker.patch.object(OpenClipTextualEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(OpenClipTextualEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
mock_tokenizer = mocker.patch("app.models.clip.textual.Tokenizer.from_file", autospec=True).return_value
mock_ids = [randint(0, 50000) for _ in range(77)]
mock_tokenizer.encode.return_value = SimpleNamespace(ids=mock_ids)
clip_encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir="test_cache")
clip_encoder._load()
tokens = clip_encoder.tokenize("test search query")
assert "text" in tokens
assert isinstance(tokens["text"], np.ndarray)
assert tokens["text"].shape == (1, 77)
assert tokens["text"].dtype == np.int32
assert np.allclose(tokens["text"], np.array([mock_ids], dtype=np.int32), atol=0)
def test_mclip_tokenizer(
self,
mocker: MockerFixture,
clip_model_cfg: dict[str, Any],
clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
) -> None:
mocker.patch.object(MClipTextualEncoder, "download")
mocker.patch.object(MClipTextualEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(MClipTextualEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
mock_tokenizer = mocker.patch("app.models.clip.textual.Tokenizer.from_file", autospec=True).return_value
mock_ids = [randint(0, 50000) for _ in range(77)]
mock_attention_mask = [randint(0, 1) for _ in range(77)]
mock_tokenizer.encode.return_value = SimpleNamespace(ids=mock_ids, attention_mask=mock_attention_mask)
clip_encoder = MClipTextualEncoder("ViT-B-32__openai", cache_dir="test_cache")
clip_encoder._load()
tokens = clip_encoder.tokenize("test search query")
assert "input_ids" in tokens
assert "attention_mask" in tokens
assert isinstance(tokens["input_ids"], np.ndarray)
assert isinstance(tokens["attention_mask"], np.ndarray)
assert tokens["input_ids"].shape == (1, 77)
assert tokens["attention_mask"].shape == (1, 77)
assert np.allclose(tokens["input_ids"], np.array([mock_ids], dtype=np.int32), atol=0)
assert np.allclose(tokens["attention_mask"], np.array([mock_attention_mask], dtype=np.int32), atol=0)
class TestFaceRecognition:
def test_set_min_score(self, mocker: MockerFixture) -> None:
mocker.patch.object(FaceRecognizer, "load")
face_recognizer = FaceRecognizer("buffalo_s", cache_dir="test_cache", min_score=0.5)
assert face_recognizer.min_score == 0.5
def test_detection(self, cv_image: cv2.Mat, mocker: MockerFixture) -> None:
mocker.patch.object(FaceDetector, "load")
face_detector = FaceDetector("buffalo_s", min_score=0.0, cache_dir="test_cache")
det_model = mock.Mock()
num_faces = 2
bbox = np.random.rand(num_faces, 4).astype(np.float32)
scores = np.array([[0.67]] * num_faces).astype(np.float32)
kpss = np.random.rand(num_faces, 5, 2).astype(np.float32)
det_model.detect.return_value = (np.concatenate([bbox, scores], axis=-1), kpss)
face_detector.model = det_model
faces = face_detector.predict(cv_image)
assert isinstance(faces, dict)
assert isinstance(faces.get("boxes", None), np.ndarray)
assert isinstance(faces.get("landmarks", None), np.ndarray)
assert isinstance(faces.get("scores", None), np.ndarray)
assert np.equal(faces["boxes"], bbox.round()).all()
assert np.equal(faces["landmarks"], kpss).all()
assert np.equal(faces["scores"], scores).all()
det_model.detect.assert_called_once()
def test_recognition(self, cv_image: cv2.Mat, mocker: MockerFixture) -> None:
mocker.patch.object(FaceRecognizer, "load")
face_recognizer = FaceRecognizer("buffalo_s", min_score=0.0, cache_dir="test_cache")
num_faces = 2
bbox = np.random.rand(num_faces, 4).astype(np.float32)
scores = np.array([0.67] * num_faces).astype(np.float32)
kpss = np.random.rand(num_faces, 5, 2).astype(np.float32)
faces = {"boxes": bbox, "landmarks": kpss, "scores": scores}
rec_model = mock.Mock()
embedding = np.random.rand(num_faces, 512).astype(np.float32)
rec_model.get_feat.return_value = embedding
face_recognizer.model = rec_model
faces = face_recognizer.predict(cv_image, faces)
assert isinstance(faces, list)
assert len(faces) == num_faces
for face in faces:
assert isinstance(face.get("boundingBox"), dict)
assert set(face["boundingBox"]) == {"x1", "y1", "x2", "y2"}
assert all(isinstance(val, np.float32) for val in face["boundingBox"].values())
assert isinstance(face.get("embedding"), np.ndarray)
2023-11-13 20:37:39 +01:00
assert face["embedding"].shape[0] == 512
assert isinstance(face.get("score", None), np.float32)
rec_model.get_feat.assert_called_once()
call_args = rec_model.get_feat.call_args_list[0].args
assert len(call_args) == 1
assert isinstance(call_args[0], list)
assert isinstance(call_args[0][0], np.ndarray)
assert call_args[0][0].shape == (112, 112, 3)
def test_recognition_adds_batch_axis_for_ort(
self, ort_session: mock.Mock, path: mock.Mock, mocker: MockerFixture
) -> None:
2024-06-25 18:00:24 +02:00
onnx = mocker.patch("app.models.facial_recognition.recognition.onnx", autospec=True)
update_dims = mocker.patch(
"app.models.facial_recognition.recognition.update_inputs_outputs_dims", autospec=True
)
mocker.patch("app.models.base.InferenceModel.download")
mocker.patch("app.models.facial_recognition.recognition.ArcFaceONNX")
ort_session.return_value.get_inputs.return_value = [SimpleNamespace(name="input.1", shape=(1, 3, 224, 224))]
ort_session.return_value.get_outputs.return_value = [SimpleNamespace(name="output.1", shape=(1, 800))]
path.return_value.__truediv__.return_value.__truediv__.return_value.suffix = ".onnx"
2024-06-25 18:00:24 +02:00
proto = mock.Mock()
input_dims = mock.Mock()
input_dims.name = "input.1"
input_dims.type.tensor_type.shape.dim = [SimpleNamespace(dim_value=size) for size in [1, 3, 224, 224]]
proto.graph.input = [input_dims]
output_dims = mock.Mock()
output_dims.name = "output.1"
output_dims.type.tensor_type.shape.dim = [SimpleNamespace(dim_value=size) for size in [1, 800]]
proto.graph.output = [output_dims]
onnx.load.return_value = proto
face_recognizer = FaceRecognizer("buffalo_s", cache_dir=path)
2024-06-25 18:00:24 +02:00
face_recognizer.load()
assert face_recognizer.batch is True
update_dims.assert_called_once_with(proto, {"input.1": ["batch", 3, 224, 224]}, {"output.1": ["batch", 800]})
onnx.save.assert_called_once_with(update_dims.return_value, face_recognizer.model_path)
def test_recognition_does_not_add_batch_axis_if_exists(
self, ort_session: mock.Mock, path: mock.Mock, mocker: MockerFixture
) -> None:
2024-06-25 18:00:24 +02:00
onnx = mocker.patch("app.models.facial_recognition.recognition.onnx", autospec=True)
update_dims = mocker.patch(
"app.models.facial_recognition.recognition.update_inputs_outputs_dims", autospec=True
)
mocker.patch("app.models.base.InferenceModel.download")
mocker.patch("app.models.facial_recognition.recognition.ArcFaceONNX")
path.return_value.__truediv__.return_value.__truediv__.return_value.suffix = ".onnx"
2024-06-25 18:00:24 +02:00
inputs = [SimpleNamespace(name="input.1", shape=("batch", 3, 224, 224))]
outputs = [SimpleNamespace(name="output.1", shape=("batch", 800))]
ort_session.return_value.get_inputs.return_value = inputs
ort_session.return_value.get_outputs.return_value = outputs
face_recognizer = FaceRecognizer("buffalo_s", cache_dir=path)
2024-06-25 18:00:24 +02:00
face_recognizer.load()
assert face_recognizer.batch is True
update_dims.assert_not_called()
onnx.load.assert_not_called()
onnx.save.assert_not_called()
def test_recognition_does_not_add_batch_axis_for_armnn(
self, ann_session: mock.Mock, path: mock.Mock, mocker: MockerFixture
) -> None:
onnx = mocker.patch("app.models.facial_recognition.recognition.onnx", autospec=True)
update_dims = mocker.patch(
"app.models.facial_recognition.recognition.update_inputs_outputs_dims", autospec=True
)
mocker.patch("app.models.base.InferenceModel.download")
mocker.patch("app.models.facial_recognition.recognition.ArcFaceONNX")
path.return_value.__truediv__.return_value.__truediv__.return_value.suffix = ".armnn"
inputs = [SimpleNamespace(name="input.1", shape=("batch", 3, 224, 224))]
outputs = [SimpleNamespace(name="output.1", shape=("batch", 800))]
ann_session.return_value.get_inputs.return_value = inputs
ann_session.return_value.get_outputs.return_value = outputs
face_recognizer = FaceRecognizer("buffalo_s", model_format=ModelFormat.ARMNN, cache_dir=path)
face_recognizer.load()
assert face_recognizer.batch is False
update_dims.assert_not_called()
onnx.load.assert_not_called()
onnx.save.assert_not_called()
@pytest.mark.asyncio
class TestCache:
async def test_caches(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION)
await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION)
assert len(model_cache.cache._cache) == 1
mock_get_model.assert_called_once()
async def test_kwargs_used(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get(
"test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, cache_dir="test_cache"
)
mock_get_model.assert_called_once_with(
"test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, cache_dir="test_cache"
)
async def test_different_clip(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get("test_model_name", ModelType.VISUAL, ModelTask.SEARCH)
await model_cache.get("test_model_name", ModelType.TEXTUAL, ModelTask.SEARCH)
mock_get_model.assert_has_calls(
[
mock.call("test_model_name", ModelType.VISUAL, ModelTask.SEARCH),
mock.call("test_model_name", ModelType.TEXTUAL, ModelTask.SEARCH),
]
)
assert len(model_cache.cache._cache) == 2
@mock.patch("app.models.cache.OptimisticLock", autospec=True)
async def test_model_ttl(self, mock_lock_cls: mock.Mock, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, ttl=100)
mock_lock_cls.return_value.__aenter__.return_value.cas.assert_called_with(mock.ANY, ttl=100)
@mock.patch("app.models.cache.SimpleMemoryCache.expire")
async def test_revalidate_get(self, mock_cache_expire: mock.Mock, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache(revalidate=True)
await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, ttl=100)
await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, ttl=100)
mock_cache_expire.assert_called_once_with(mock.ANY, 100)
async def test_profiling(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache(profiling=True)
await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, ttl=100)
profiling = await model_cache.get_profiling()
assert isinstance(profiling, dict)
assert profiling == model_cache.cache.profiling
async def test_loads_mclip(self) -> None:
model_cache = ModelCache()
model = await model_cache.get("XLM-Roberta-Large-Vit-B-32", ModelType.TEXTUAL, ModelTask.SEARCH)
assert isinstance(model, MClipTextualEncoder)
assert model.model_name == "XLM-Roberta-Large-Vit-B-32"
async def test_raises_exception_if_invalid_model_type(self) -> None:
invalid: Any = SimpleNamespace(value="invalid")
model_cache = ModelCache()
with pytest.raises(ValueError):
await model_cache.get("XLM-Roberta-Large-Vit-B-32", ModelType.TEXTUAL, invalid)
async def test_raises_exception_if_unknown_model_name(self) -> None:
model_cache = ModelCache()
with pytest.raises(ValueError):
await model_cache.get("test_model_name", ModelType.TEXTUAL, ModelTask.SEARCH)
async def test_preloads_clip_models(self, monkeypatch: MonkeyPatch, mock_get_model: mock.Mock) -> None:
os.environ["MACHINE_LEARNING_PRELOAD__CLIP"] = "ViT-B-32__openai"
settings = Settings()
assert settings.preload is not None
assert settings.preload.clip == "ViT-B-32__openai"
model_cache = ModelCache()
monkeypatch.setattr("app.main.model_cache", model_cache)
await preload_models(settings.preload)
mock_get_model.assert_has_calls(
[
mock.call("ViT-B-32__openai", ModelType.TEXTUAL, ModelTask.SEARCH),
mock.call("ViT-B-32__openai", ModelType.VISUAL, ModelTask.SEARCH),
],
any_order=True,
)
async def test_preloads_facial_recognition_models(
self, monkeypatch: MonkeyPatch, mock_get_model: mock.Mock
) -> None:
os.environ["MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION"] = "buffalo_s"
settings = Settings()
assert settings.preload is not None
assert settings.preload.facial_recognition == "buffalo_s"
model_cache = ModelCache()
monkeypatch.setattr("app.main.model_cache", model_cache)
await preload_models(settings.preload)
mock_get_model.assert_has_calls(
[
mock.call("buffalo_s", ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION),
mock.call("buffalo_s", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION),
],
any_order=True,
)
async def test_preloads_all_models(self, monkeypatch: MonkeyPatch, mock_get_model: mock.Mock) -> None:
os.environ["MACHINE_LEARNING_PRELOAD__CLIP"] = "ViT-B-32__openai"
os.environ["MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION"] = "buffalo_s"
settings = Settings()
assert settings.preload is not None
assert settings.preload.clip == "ViT-B-32__openai"
assert settings.preload.facial_recognition == "buffalo_s"
model_cache = ModelCache()
monkeypatch.setattr("app.main.model_cache", model_cache)
await preload_models(settings.preload)
mock_get_model.assert_has_calls(
[
mock.call("ViT-B-32__openai", ModelType.TEXTUAL, ModelTask.SEARCH),
mock.call("ViT-B-32__openai", ModelType.VISUAL, ModelTask.SEARCH),
mock.call("buffalo_s", ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION),
mock.call("buffalo_s", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION),
],
any_order=True,
)
@pytest.mark.asyncio
class TestLoad:
async def test_load(self) -> None:
mock_model = mock.Mock(spec=InferenceModel)
mock_model.loaded = False
2024-06-20 20:13:18 +02:00
mock_model.load_attempts = 0
res = await load(mock_model)
assert res is mock_model
mock_model.load.assert_called_once()
mock_model.clear_cache.assert_not_called()
async def test_load_returns_model_if_loaded(self) -> None:
mock_model = mock.Mock(spec=InferenceModel)
mock_model.loaded = True
res = await load(mock_model)
assert res is mock_model
mock_model.load.assert_not_called()
async def test_load_clears_cache_and_retries_if_os_error(self) -> None:
mock_model = mock.Mock(spec=InferenceModel)
mock_model.model_name = "test_model_name"
mock_model.model_type = ModelType.VISUAL
mock_model.model_task = ModelTask.SEARCH
mock_model.load.side_effect = [OSError, None]
mock_model.loaded = False
2024-06-20 20:13:18 +02:00
mock_model.load_attempts = 0
res = await load(mock_model)
assert res is mock_model
mock_model.clear_cache.assert_called_once()
assert mock_model.load.call_count == 2
async def test_load_raises_if_os_error_and_already_retried(self) -> None:
2024-06-20 20:13:18 +02:00
mock_model = mock.Mock(spec=InferenceModel)
mock_model.model_name = "test_model_name"
mock_model.model_type = ModelType.VISUAL
mock_model.model_task = ModelTask.SEARCH
mock_model.loaded = False
mock_model.load_attempts = 2
with pytest.raises(HTTPException):
await load(mock_model)
mock_model.clear_cache.assert_not_called()
mock_model.load.assert_not_called()
async def test_falls_back_to_onnx_if_other_format_does_not_exist(
self, exception: mock.Mock, warning: mock.Mock
) -> None:
mock_model = mock.Mock(spec=InferenceModel)
mock_model.model_name = "test_model_name"
mock_model.model_type = ModelType.VISUAL
mock_model.model_task = ModelTask.SEARCH
mock_model.model_format = ModelFormat.ARMNN
mock_model.loaded = False
mock_model.load_attempts = 0
error = FileNotFoundError()
mock_model.load.side_effect = [error, None]
await load(mock_model)
mock_model.clear_cache.assert_not_called()
assert mock_model.load.call_count == 2
exception.assert_called_once_with(error)
warning.assert_called_once_with("ARMNN is available, but model 'test_model_name' does not support it.")
mock_model.model_format = ModelFormat.ONNX
@pytest.mark.skipif(
not settings.test_full,
reason="More time-consuming since it deploys the app and loads models.",
)
class TestEndpoints:
def test_clip_image_endpoint(
self, pil_image: Image.Image, responses: dict[str, Any], deployed_app: TestClient
) -> None:
byte_image = BytesIO()
pil_image.save(byte_image, format="jpeg")
expected = responses["clip"]["image"]
response = deployed_app.post(
"http://localhost:3003/predict",
data={"entries": json.dumps({"clip": {"visual": {"modelName": "ViT-B-32__openai"}}})},
files={"image": byte_image.getvalue()},
)
actual = response.json()
assert response.status_code == 200
assert isinstance(actual, dict)
assert isinstance(actual.get("clip", None), list)
assert np.allclose(expected, actual["clip"])
def test_clip_text_endpoint(self, responses: dict[str, Any], deployed_app: TestClient) -> None:
expected = responses["clip"]["text"]
response = deployed_app.post(
"http://localhost:3003/predict",
data={
"entries": json.dumps(
{
"clip": {"textual": {"modelName": "ViT-B-32__openai"}},
},
),
"text": "test search query",
},
)
actual = response.json()
assert response.status_code == 200
assert isinstance(actual, dict)
assert isinstance(actual.get("clip", None), list)
assert np.allclose(expected, actual["clip"])
def test_face_endpoint(self, pil_image: Image.Image, responses: dict[str, Any], deployed_app: TestClient) -> None:
byte_image = BytesIO()
pil_image.save(byte_image, format="jpeg")
response = deployed_app.post(
"http://localhost:3003/predict",
data={
"entries": json.dumps(
{
"facial-recognition": {
"detection": {"modelName": "buffalo_l", "options": {"minScore": 0.034}},
"recognition": {"modelName": "buffalo_l"},
}
}
)
},
files={"image": byte_image.getvalue()},
)
actual = response.json()
assert response.status_code == 200
assert isinstance(actual, dict)
assert actual.get("imageHeight", None) == responses["imageHeight"]
assert actual.get("imageWidth", None) == responses["imageWidth"]
assert "facial-recognition" in actual and isinstance(actual["facial-recognition"], list)
assert len(actual["facial-recognition"]) == len(responses["facial-recognition"])
for expected_face, actual_face in zip(responses["facial-recognition"], actual["facial-recognition"]):
assert expected_face["boundingBox"] == actual_face["boundingBox"]
assert np.allclose(expected_face["embedding"], actual_face["embedding"])
assert np.allclose(expected_face["score"], actual_face["score"])