mirror of
https://github.com/immich-app/immich.git
synced 2025-01-06 03:46:47 +01:00
c73832bd9c
* download facial recognition models * download hf models * simplified logic * updated `predict` for facial recognition * ensure download method is called * fixed repo_id for clip * fixed download destination * use st's own `snapshot_download` * conditional download * fixed predict method * check if loaded * minor fixes * updated mypy overrides * added pytest-mock * updated tests * updated lock
42 lines
1.3 KiB
Python
42 lines
1.3 KiB
Python
from pathlib import Path
|
|
from typing import Any
|
|
|
|
from huggingface_hub import snapshot_download
|
|
from PIL.Image import Image
|
|
from transformers.pipelines import pipeline
|
|
|
|
from ..config import settings
|
|
from ..schemas import ModelType
|
|
from .base import InferenceModel
|
|
|
|
|
|
class ImageClassifier(InferenceModel):
|
|
_model_type = ModelType.IMAGE_CLASSIFICATION
|
|
|
|
def __init__(
|
|
self,
|
|
model_name: str,
|
|
min_score: float = settings.min_tag_score,
|
|
cache_dir: Path | str | None = None,
|
|
**model_kwargs: Any,
|
|
) -> None:
|
|
self.min_score = min_score
|
|
super().__init__(model_name, cache_dir, **model_kwargs)
|
|
|
|
def _download(self, **model_kwargs: Any) -> None:
|
|
snapshot_download(
|
|
cache_dir=self.cache_dir, repo_id=self.model_name, allow_patterns=["*.bin", "*.json", "*.txt"]
|
|
)
|
|
|
|
def _load(self, **model_kwargs: Any) -> None:
|
|
self.model = pipeline(
|
|
self.model_type.value,
|
|
self.model_name,
|
|
model_kwargs={"cache_dir": self.cache_dir, **model_kwargs},
|
|
)
|
|
|
|
def _predict(self, image: Image) -> list[str]:
|
|
predictions: list[dict[str, Any]] = self.model(image) # type: ignore
|
|
tags = [tag for pred in predictions for tag in pred["label"].split(", ") if pred["score"] >= self.min_score]
|
|
|
|
return tags
|