mirror of
https://github.com/immich-app/immich.git
synced 2025-01-01 16:41:59 +00:00
a68e6be7e1
remove local_dir_use_symlinks
874 lines
37 KiB
Python
874 lines
37 KiB
Python
import json
|
|
import os
|
|
from io import BytesIO
|
|
from pathlib import Path
|
|
from random import randint
|
|
from types import SimpleNamespace
|
|
from typing import Any, Callable
|
|
from unittest import mock
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import onnxruntime as ort
|
|
import pytest
|
|
from fastapi import HTTPException
|
|
from fastapi.testclient import TestClient
|
|
from PIL import Image
|
|
from pytest import MonkeyPatch
|
|
from pytest_mock import MockerFixture
|
|
|
|
from app.main import load, preload_models
|
|
from app.models.clip.textual import MClipTextualEncoder, OpenClipTextualEncoder
|
|
from app.models.clip.visual import OpenClipVisualEncoder
|
|
from app.models.facial_recognition.detection import FaceDetector
|
|
from app.models.facial_recognition.recognition import FaceRecognizer
|
|
from app.sessions.ann import AnnSession
|
|
from app.sessions.ort import OrtSession
|
|
|
|
from .config import Settings, settings
|
|
from .models.base import InferenceModel
|
|
from .models.cache import ModelCache
|
|
from .schemas import ModelFormat, ModelTask, ModelType
|
|
|
|
|
|
class TestBase:
|
|
def test_sets_default_cache_dir(self) -> None:
|
|
encoder = OpenClipTextualEncoder("ViT-B-32__openai")
|
|
|
|
assert encoder.cache_dir == Path(settings.cache_folder) / "clip" / "ViT-B-32__openai"
|
|
|
|
def test_sets_cache_dir_kwarg(self) -> None:
|
|
cache_dir = Path("/test_cache")
|
|
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=cache_dir)
|
|
|
|
assert encoder.cache_dir == cache_dir
|
|
|
|
def test_sets_default_model_format(self, mocker: MockerFixture) -> None:
|
|
mocker.patch.object(settings, "ann", True)
|
|
mocker.patch("ann.ann.is_available", False)
|
|
|
|
encoder = OpenClipTextualEncoder("ViT-B-32__openai")
|
|
|
|
assert encoder.model_format == ModelFormat.ONNX
|
|
|
|
def test_sets_default_model_format_to_armnn_if_available(self, path: mock.Mock, mocker: MockerFixture) -> None:
|
|
mocker.patch.object(settings, "ann", True)
|
|
mocker.patch("ann.ann.is_available", True)
|
|
path.suffix = ".armnn"
|
|
|
|
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=path)
|
|
|
|
assert encoder.model_format == ModelFormat.ARMNN
|
|
|
|
def test_sets_model_format_kwarg(self, mocker: MockerFixture) -> None:
|
|
mocker.patch.object(settings, "ann", False)
|
|
mocker.patch("ann.ann.is_available", False)
|
|
|
|
encoder = OpenClipTextualEncoder("ViT-B-32__openai", model_format=ModelFormat.ARMNN)
|
|
|
|
assert encoder.model_format == ModelFormat.ARMNN
|
|
|
|
def test_casts_cache_dir_string_to_path(self) -> None:
|
|
cache_dir = "/test_cache"
|
|
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=cache_dir)
|
|
|
|
assert encoder.cache_dir == Path(cache_dir)
|
|
|
|
def test_clear_cache(self, rmtree: mock.Mock, path: mock.Mock, info: mock.Mock) -> None:
|
|
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=path)
|
|
encoder.clear_cache()
|
|
|
|
rmtree.assert_called_once_with(encoder.cache_dir)
|
|
info.assert_called_with(f"Cleared cache directory for model '{encoder.model_name}'.")
|
|
|
|
def test_clear_cache_warns_if_path_does_not_exist(
|
|
self, rmtree: mock.Mock, path: mock.Mock, warning: mock.Mock
|
|
) -> None:
|
|
path.return_value.exists.return_value = False
|
|
|
|
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=path)
|
|
encoder.clear_cache()
|
|
|
|
rmtree.assert_not_called()
|
|
warning.assert_called_once()
|
|
|
|
def test_clear_cache_raises_exception_if_vulnerable_to_symlink_attack(
|
|
self, rmtree: mock.Mock, path: mock.Mock
|
|
) -> None:
|
|
rmtree.avoids_symlink_attacks = False
|
|
|
|
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=path)
|
|
with pytest.raises(RuntimeError):
|
|
encoder.clear_cache()
|
|
|
|
rmtree.assert_not_called()
|
|
|
|
def test_clear_cache_replaces_file_with_dir_if_path_is_file(
|
|
self, rmtree: mock.Mock, path: mock.Mock, warning: mock.Mock
|
|
) -> None:
|
|
path.return_value.is_dir.return_value = False
|
|
|
|
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=path)
|
|
encoder.clear_cache()
|
|
|
|
rmtree.assert_not_called()
|
|
path.return_value.unlink.assert_called_once()
|
|
path.return_value.mkdir.assert_called_once()
|
|
warning.assert_called_once()
|
|
|
|
def test_download(self, snapshot_download: mock.Mock) -> None:
|
|
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir="/path/to/cache")
|
|
encoder.download()
|
|
|
|
snapshot_download.assert_called_once_with(
|
|
"immich-app/ViT-B-32__openai",
|
|
cache_dir=encoder.cache_dir,
|
|
local_dir=encoder.cache_dir,
|
|
ignore_patterns=["*.armnn"],
|
|
)
|
|
|
|
def test_download_downloads_armnn_if_preferred_format(self, snapshot_download: mock.Mock) -> None:
|
|
encoder = OpenClipTextualEncoder("ViT-B-32__openai", model_format=ModelFormat.ARMNN)
|
|
encoder.download()
|
|
|
|
snapshot_download.assert_called_once_with(
|
|
"immich-app/ViT-B-32__openai",
|
|
cache_dir=encoder.cache_dir,
|
|
local_dir=encoder.cache_dir,
|
|
ignore_patterns=[],
|
|
)
|
|
|
|
def test_throws_exception_if_model_path_does_not_exist(
|
|
self, snapshot_download: mock.Mock, ort_session: mock.Mock, path: mock.Mock
|
|
) -> None:
|
|
path.return_value.__truediv__.return_value.__truediv__.return_value.is_file.return_value = False
|
|
|
|
encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=path)
|
|
|
|
with pytest.raises(FileNotFoundError):
|
|
encoder.load()
|
|
|
|
snapshot_download.assert_called_once()
|
|
ort_session.assert_not_called()
|
|
|
|
|
|
@pytest.mark.usefixtures("ort_session")
|
|
class TestOrtSession:
|
|
CPU_EP = ["CPUExecutionProvider"]
|
|
CUDA_EP = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
|
OV_EP = ["OpenVINOExecutionProvider", "CPUExecutionProvider"]
|
|
CUDA_EP_OUT_OF_ORDER = ["CPUExecutionProvider", "CUDAExecutionProvider"]
|
|
TRT_EP = ["TensorrtExecutionProvider", "CUDAExecutionProvider", "CPUExecutionProvider"]
|
|
|
|
@pytest.mark.providers(CPU_EP)
|
|
def test_sets_cpu_provider(self, providers: list[str]) -> None:
|
|
session = OrtSession("ViT-B-32__openai")
|
|
|
|
assert session.providers == self.CPU_EP
|
|
|
|
@pytest.mark.providers(CUDA_EP)
|
|
def test_sets_cuda_provider_if_available(self, providers: list[str]) -> None:
|
|
session = OrtSession("ViT-B-32__openai")
|
|
|
|
assert session.providers == self.CUDA_EP
|
|
|
|
@pytest.mark.ov_device_ids(["GPU.0", "CPU"])
|
|
@pytest.mark.providers(OV_EP)
|
|
def test_sets_openvino_provider_if_available(self, providers: list[str], ov_device_ids: list[str]) -> None:
|
|
session = OrtSession("ViT-B-32__openai")
|
|
|
|
assert session.providers == self.OV_EP
|
|
|
|
@pytest.mark.ov_device_ids(["CPU"])
|
|
@pytest.mark.providers(OV_EP)
|
|
def test_avoids_openvino_if_gpu_not_available(self, providers: list[str], ov_device_ids: list[str]) -> None:
|
|
session = OrtSession("ViT-B-32__openai")
|
|
|
|
assert session.providers == self.CPU_EP
|
|
|
|
@pytest.mark.providers(CUDA_EP_OUT_OF_ORDER)
|
|
def test_sets_providers_in_correct_order(self, providers: list[str]) -> None:
|
|
session = OrtSession("ViT-B-32__openai")
|
|
|
|
assert session.providers == self.CUDA_EP
|
|
|
|
@pytest.mark.providers(TRT_EP)
|
|
def test_ignores_unsupported_providers(self, providers: list[str]) -> None:
|
|
session = OrtSession("ViT-B-32__openai")
|
|
|
|
assert session.providers == self.CUDA_EP
|
|
|
|
def test_sets_provider_kwarg(self) -> None:
|
|
providers = ["CUDAExecutionProvider"]
|
|
session = OrtSession("ViT-B-32__openai", providers=providers)
|
|
|
|
assert session.providers == providers
|
|
|
|
@pytest.mark.ov_device_ids(["GPU.0", "CPU"])
|
|
def test_sets_default_provider_options(self, ov_device_ids: list[str]) -> None:
|
|
model_path = "/cache/ViT-B-32__openai/model.onnx"
|
|
session = OrtSession(model_path, providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"])
|
|
|
|
assert session.provider_options == [
|
|
{"device_type": "GPU", "precision": "FP32", "cache_dir": "/cache/ViT-B-32__openai/openvino"},
|
|
{"arena_extend_strategy": "kSameAsRequested"},
|
|
]
|
|
|
|
def test_sets_provider_options_kwarg(self) -> None:
|
|
session = OrtSession(
|
|
"ViT-B-32__openai",
|
|
providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"],
|
|
provider_options=[],
|
|
)
|
|
|
|
assert session.provider_options == []
|
|
|
|
def test_sets_default_sess_options(self) -> None:
|
|
session = OrtSession("ViT-B-32__openai")
|
|
|
|
assert session.sess_options.execution_mode == ort.ExecutionMode.ORT_SEQUENTIAL
|
|
assert session.sess_options.inter_op_num_threads == 1
|
|
assert session.sess_options.intra_op_num_threads == 2
|
|
assert session.sess_options.enable_cpu_mem_arena is False
|
|
|
|
def test_sets_default_sess_options_does_not_set_threads_if_non_cpu_and_default_threads(self) -> None:
|
|
session = OrtSession("ViT-B-32__openai", providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
|
|
|
|
assert session.sess_options.inter_op_num_threads == 0
|
|
assert session.sess_options.intra_op_num_threads == 0
|
|
|
|
def test_sets_default_sess_options_sets_threads_if_non_cpu_and_set_threads(self, mocker: MockerFixture) -> None:
|
|
mock_settings = mocker.patch("app.sessions.ort.settings", autospec=True)
|
|
mock_settings.model_inter_op_threads = 2
|
|
mock_settings.model_intra_op_threads = 4
|
|
|
|
session = OrtSession("ViT-B-32__openai", providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
|
|
|
|
assert session.sess_options.inter_op_num_threads == 2
|
|
assert session.sess_options.intra_op_num_threads == 4
|
|
|
|
def test_sets_sess_options_kwarg(self) -> None:
|
|
sess_options = ort.SessionOptions()
|
|
session = OrtSession(
|
|
"ViT-B-32__openai",
|
|
providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"],
|
|
provider_options=[],
|
|
sess_options=sess_options,
|
|
)
|
|
|
|
assert sess_options is session.sess_options
|
|
|
|
|
|
class TestAnnSession:
|
|
def test_creates_ann_session(self, ann_session: mock.Mock, info: mock.Mock) -> None:
|
|
model_path = mock.MagicMock(spec=Path)
|
|
cache_dir = mock.MagicMock(spec=Path)
|
|
|
|
AnnSession(model_path, cache_dir)
|
|
|
|
ann_session.assert_called_once_with(tuning_level=2, tuning_file=(cache_dir / "gpu-tuning.ann").as_posix())
|
|
ann_session.return_value.load.assert_called_once_with(
|
|
model_path.as_posix(), cached_network_path=model_path.with_suffix(".anncache").as_posix(), fp16=False
|
|
)
|
|
info.assert_has_calls(
|
|
[
|
|
mock.call("Loading ANN model %s ...", model_path),
|
|
mock.call("Loaded ANN model with ID %d", ann_session.return_value.load.return_value),
|
|
]
|
|
)
|
|
|
|
def test_get_inputs(self, ann_session: mock.Mock) -> None:
|
|
ann_session.return_value.load.return_value = 123
|
|
ann_session.return_value.input_shapes = {123: [(1, 3, 224, 224)]}
|
|
session = AnnSession(Path("ViT-B-32__openai"))
|
|
|
|
inputs = session.get_inputs()
|
|
|
|
assert len(inputs) == 1
|
|
assert inputs[0].name is None
|
|
assert inputs[0].shape == (1, 3, 224, 224)
|
|
|
|
def test_get_outputs(self, ann_session: mock.Mock) -> None:
|
|
ann_session.return_value.load.return_value = 123
|
|
ann_session.return_value.output_shapes = {123: [(1, 3, 224, 224)]}
|
|
session = AnnSession(Path("ViT-B-32__openai"))
|
|
|
|
outputs = session.get_outputs()
|
|
|
|
assert len(outputs) == 1
|
|
assert outputs[0].name is None
|
|
assert outputs[0].shape == (1, 3, 224, 224)
|
|
|
|
def test_run(self, ann_session: mock.Mock, mocker: MockerFixture) -> None:
|
|
ann_session.return_value.load.return_value = 123
|
|
np_spy = mocker.spy(np, "ascontiguousarray")
|
|
session = AnnSession(Path("ViT-B-32__openai"))
|
|
[input1, input2] = [np.random.rand(1, 3, 224, 224).astype(np.float32) for _ in range(2)]
|
|
input_feed = {"input.1": input1, "input.2": input2}
|
|
|
|
session.run(None, input_feed)
|
|
|
|
ann_session.return_value.execute.assert_called_once_with(123, [input1, input2])
|
|
np_spy.call_count == 2
|
|
np_spy.assert_has_calls([mock.call(input1), mock.call(input2)])
|
|
|
|
|
|
class TestCLIP:
|
|
embedding = np.random.rand(512).astype(np.float32)
|
|
cache_dir = Path("test_cache")
|
|
|
|
def test_basic_image(
|
|
self,
|
|
pil_image: Image.Image,
|
|
mocker: MockerFixture,
|
|
clip_model_cfg: dict[str, Any],
|
|
clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
|
|
) -> None:
|
|
mocker.patch.object(OpenClipVisualEncoder, "download")
|
|
mocker.patch.object(OpenClipVisualEncoder, "model_cfg", clip_model_cfg)
|
|
mocker.patch.object(OpenClipVisualEncoder, "preprocess_cfg", clip_preprocess_cfg)
|
|
|
|
mocked = mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
|
|
mocked.run.return_value = [[self.embedding]]
|
|
|
|
clip_encoder = OpenClipVisualEncoder("ViT-B-32__openai", cache_dir="test_cache")
|
|
embedding = clip_encoder.predict(pil_image)
|
|
|
|
assert isinstance(embedding, np.ndarray)
|
|
assert embedding.shape[0] == clip_model_cfg["embed_dim"]
|
|
assert embedding.dtype == np.float32
|
|
mocked.run.assert_called_once()
|
|
|
|
def test_basic_text(
|
|
self,
|
|
mocker: MockerFixture,
|
|
clip_model_cfg: dict[str, Any],
|
|
clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
|
|
) -> None:
|
|
mocker.patch.object(OpenClipTextualEncoder, "download")
|
|
mocker.patch.object(OpenClipTextualEncoder, "model_cfg", clip_model_cfg)
|
|
mocker.patch.object(OpenClipTextualEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
|
|
|
|
mocked = mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
|
|
mocked.run.return_value = [[self.embedding]]
|
|
mocker.patch("app.models.clip.textual.Tokenizer.from_file", autospec=True)
|
|
|
|
clip_encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir="test_cache")
|
|
embedding = clip_encoder.predict("test search query")
|
|
|
|
assert isinstance(embedding, np.ndarray)
|
|
assert embedding.shape[0] == clip_model_cfg["embed_dim"]
|
|
assert embedding.dtype == np.float32
|
|
mocked.run.assert_called_once()
|
|
|
|
def test_openclip_tokenizer(
|
|
self,
|
|
mocker: MockerFixture,
|
|
clip_model_cfg: dict[str, Any],
|
|
clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
|
|
) -> None:
|
|
mocker.patch.object(OpenClipTextualEncoder, "download")
|
|
mocker.patch.object(OpenClipTextualEncoder, "model_cfg", clip_model_cfg)
|
|
mocker.patch.object(OpenClipTextualEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
|
|
mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
|
|
mock_tokenizer = mocker.patch("app.models.clip.textual.Tokenizer.from_file", autospec=True).return_value
|
|
mock_ids = [randint(0, 50000) for _ in range(77)]
|
|
mock_tokenizer.encode.return_value = SimpleNamespace(ids=mock_ids)
|
|
|
|
clip_encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir="test_cache")
|
|
clip_encoder._load()
|
|
tokens = clip_encoder.tokenize("test search query")
|
|
|
|
assert "text" in tokens
|
|
assert isinstance(tokens["text"], np.ndarray)
|
|
assert tokens["text"].shape == (1, 77)
|
|
assert tokens["text"].dtype == np.int32
|
|
assert np.allclose(tokens["text"], np.array([mock_ids], dtype=np.int32), atol=0)
|
|
mock_tokenizer.encode.assert_called_once_with("test search query")
|
|
|
|
def test_openclip_tokenizer_canonicalizes_text(
|
|
self,
|
|
mocker: MockerFixture,
|
|
clip_model_cfg: dict[str, Any],
|
|
clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
|
|
) -> None:
|
|
clip_model_cfg["text_cfg"]["tokenizer_kwargs"] = {"clean": "canonicalize"}
|
|
mocker.patch.object(OpenClipTextualEncoder, "download")
|
|
mocker.patch.object(OpenClipTextualEncoder, "model_cfg", clip_model_cfg)
|
|
mocker.patch.object(OpenClipTextualEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
|
|
mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
|
|
mock_tokenizer = mocker.patch("app.models.clip.textual.Tokenizer.from_file", autospec=True).return_value
|
|
mock_ids = [randint(0, 50000) for _ in range(77)]
|
|
mock_tokenizer.encode.return_value = SimpleNamespace(ids=mock_ids)
|
|
|
|
clip_encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir="test_cache")
|
|
clip_encoder._load()
|
|
tokens = clip_encoder.tokenize("Test Search Query!")
|
|
|
|
assert "text" in tokens
|
|
assert isinstance(tokens["text"], np.ndarray)
|
|
assert tokens["text"].shape == (1, 77)
|
|
assert tokens["text"].dtype == np.int32
|
|
assert np.allclose(tokens["text"], np.array([mock_ids], dtype=np.int32), atol=0)
|
|
mock_tokenizer.encode.assert_called_once_with("test search query")
|
|
|
|
def test_mclip_tokenizer(
|
|
self,
|
|
mocker: MockerFixture,
|
|
clip_model_cfg: dict[str, Any],
|
|
clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
|
|
) -> None:
|
|
mocker.patch.object(MClipTextualEncoder, "download")
|
|
mocker.patch.object(MClipTextualEncoder, "model_cfg", clip_model_cfg)
|
|
mocker.patch.object(MClipTextualEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
|
|
mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
|
|
mock_tokenizer = mocker.patch("app.models.clip.textual.Tokenizer.from_file", autospec=True).return_value
|
|
mock_ids = [randint(0, 50000) for _ in range(77)]
|
|
mock_attention_mask = [randint(0, 1) for _ in range(77)]
|
|
mock_tokenizer.encode.return_value = SimpleNamespace(ids=mock_ids, attention_mask=mock_attention_mask)
|
|
|
|
clip_encoder = MClipTextualEncoder("ViT-B-32__openai", cache_dir="test_cache")
|
|
clip_encoder._load()
|
|
tokens = clip_encoder.tokenize("test search query")
|
|
|
|
assert "input_ids" in tokens
|
|
assert "attention_mask" in tokens
|
|
assert isinstance(tokens["input_ids"], np.ndarray)
|
|
assert isinstance(tokens["attention_mask"], np.ndarray)
|
|
assert tokens["input_ids"].shape == (1, 77)
|
|
assert tokens["attention_mask"].shape == (1, 77)
|
|
assert np.allclose(tokens["input_ids"], np.array([mock_ids], dtype=np.int32), atol=0)
|
|
assert np.allclose(tokens["attention_mask"], np.array([mock_attention_mask], dtype=np.int32), atol=0)
|
|
|
|
|
|
class TestFaceRecognition:
|
|
def test_set_min_score(self, mocker: MockerFixture) -> None:
|
|
mocker.patch.object(FaceRecognizer, "load")
|
|
face_recognizer = FaceRecognizer("buffalo_s", cache_dir="test_cache", min_score=0.5)
|
|
|
|
assert face_recognizer.min_score == 0.5
|
|
|
|
def test_detection(self, cv_image: cv2.Mat, mocker: MockerFixture) -> None:
|
|
mocker.patch.object(FaceDetector, "load")
|
|
face_detector = FaceDetector("buffalo_s", min_score=0.0, cache_dir="test_cache")
|
|
|
|
det_model = mock.Mock()
|
|
num_faces = 2
|
|
bbox = np.random.rand(num_faces, 4).astype(np.float32)
|
|
scores = np.array([[0.67]] * num_faces).astype(np.float32)
|
|
kpss = np.random.rand(num_faces, 5, 2).astype(np.float32)
|
|
det_model.detect.return_value = (np.concatenate([bbox, scores], axis=-1), kpss)
|
|
face_detector.model = det_model
|
|
|
|
faces = face_detector.predict(cv_image)
|
|
|
|
assert isinstance(faces, dict)
|
|
assert isinstance(faces.get("boxes", None), np.ndarray)
|
|
assert isinstance(faces.get("landmarks", None), np.ndarray)
|
|
assert isinstance(faces.get("scores", None), np.ndarray)
|
|
assert np.equal(faces["boxes"], bbox.round()).all()
|
|
assert np.equal(faces["landmarks"], kpss).all()
|
|
assert np.equal(faces["scores"], scores).all()
|
|
det_model.detect.assert_called_once()
|
|
|
|
def test_recognition(self, cv_image: cv2.Mat, mocker: MockerFixture) -> None:
|
|
mocker.patch.object(FaceRecognizer, "load")
|
|
face_recognizer = FaceRecognizer("buffalo_s", min_score=0.0, cache_dir="test_cache")
|
|
|
|
num_faces = 2
|
|
bbox = np.random.rand(num_faces, 4).astype(np.float32)
|
|
scores = np.array([0.67] * num_faces).astype(np.float32)
|
|
kpss = np.random.rand(num_faces, 5, 2).astype(np.float32)
|
|
faces = {"boxes": bbox, "landmarks": kpss, "scores": scores}
|
|
|
|
rec_model = mock.Mock()
|
|
embedding = np.random.rand(num_faces, 512).astype(np.float32)
|
|
rec_model.get_feat.return_value = embedding
|
|
face_recognizer.model = rec_model
|
|
|
|
faces = face_recognizer.predict(cv_image, faces)
|
|
|
|
assert isinstance(faces, list)
|
|
assert len(faces) == num_faces
|
|
for face in faces:
|
|
assert isinstance(face.get("boundingBox"), dict)
|
|
assert set(face["boundingBox"]) == {"x1", "y1", "x2", "y2"}
|
|
assert all(isinstance(val, np.float32) for val in face["boundingBox"].values())
|
|
assert isinstance(face.get("embedding"), np.ndarray)
|
|
assert face["embedding"].shape[0] == 512
|
|
assert isinstance(face.get("score", None), np.float32)
|
|
|
|
rec_model.get_feat.assert_called_once()
|
|
call_args = rec_model.get_feat.call_args_list[0].args
|
|
assert len(call_args) == 1
|
|
assert isinstance(call_args[0], list)
|
|
assert isinstance(call_args[0][0], np.ndarray)
|
|
assert call_args[0][0].shape == (112, 112, 3)
|
|
|
|
def test_recognition_adds_batch_axis_for_ort(
|
|
self, ort_session: mock.Mock, path: mock.Mock, mocker: MockerFixture
|
|
) -> None:
|
|
onnx = mocker.patch("app.models.facial_recognition.recognition.onnx", autospec=True)
|
|
update_dims = mocker.patch(
|
|
"app.models.facial_recognition.recognition.update_inputs_outputs_dims", autospec=True
|
|
)
|
|
mocker.patch("app.models.base.InferenceModel.download")
|
|
mocker.patch("app.models.facial_recognition.recognition.ArcFaceONNX")
|
|
ort_session.return_value.get_inputs.return_value = [SimpleNamespace(name="input.1", shape=(1, 3, 224, 224))]
|
|
ort_session.return_value.get_outputs.return_value = [SimpleNamespace(name="output.1", shape=(1, 800))]
|
|
path.return_value.__truediv__.return_value.__truediv__.return_value.suffix = ".onnx"
|
|
|
|
proto = mock.Mock()
|
|
|
|
input_dims = mock.Mock()
|
|
input_dims.name = "input.1"
|
|
input_dims.type.tensor_type.shape.dim = [SimpleNamespace(dim_value=size) for size in [1, 3, 224, 224]]
|
|
proto.graph.input = [input_dims]
|
|
|
|
output_dims = mock.Mock()
|
|
output_dims.name = "output.1"
|
|
output_dims.type.tensor_type.shape.dim = [SimpleNamespace(dim_value=size) for size in [1, 800]]
|
|
proto.graph.output = [output_dims]
|
|
|
|
onnx.load.return_value = proto
|
|
|
|
face_recognizer = FaceRecognizer("buffalo_s", cache_dir=path)
|
|
face_recognizer.load()
|
|
|
|
assert face_recognizer.batch is True
|
|
update_dims.assert_called_once_with(proto, {"input.1": ["batch", 3, 224, 224]}, {"output.1": ["batch", 800]})
|
|
onnx.save.assert_called_once_with(update_dims.return_value, face_recognizer.model_path)
|
|
|
|
def test_recognition_does_not_add_batch_axis_if_exists(
|
|
self, ort_session: mock.Mock, path: mock.Mock, mocker: MockerFixture
|
|
) -> None:
|
|
onnx = mocker.patch("app.models.facial_recognition.recognition.onnx", autospec=True)
|
|
update_dims = mocker.patch(
|
|
"app.models.facial_recognition.recognition.update_inputs_outputs_dims", autospec=True
|
|
)
|
|
mocker.patch("app.models.base.InferenceModel.download")
|
|
mocker.patch("app.models.facial_recognition.recognition.ArcFaceONNX")
|
|
path.return_value.__truediv__.return_value.__truediv__.return_value.suffix = ".onnx"
|
|
|
|
inputs = [SimpleNamespace(name="input.1", shape=("batch", 3, 224, 224))]
|
|
outputs = [SimpleNamespace(name="output.1", shape=("batch", 800))]
|
|
ort_session.return_value.get_inputs.return_value = inputs
|
|
ort_session.return_value.get_outputs.return_value = outputs
|
|
|
|
face_recognizer = FaceRecognizer("buffalo_s", cache_dir=path)
|
|
face_recognizer.load()
|
|
|
|
assert face_recognizer.batch is True
|
|
update_dims.assert_not_called()
|
|
onnx.load.assert_not_called()
|
|
onnx.save.assert_not_called()
|
|
|
|
def test_recognition_does_not_add_batch_axis_for_armnn(
|
|
self, ann_session: mock.Mock, path: mock.Mock, mocker: MockerFixture
|
|
) -> None:
|
|
onnx = mocker.patch("app.models.facial_recognition.recognition.onnx", autospec=True)
|
|
update_dims = mocker.patch(
|
|
"app.models.facial_recognition.recognition.update_inputs_outputs_dims", autospec=True
|
|
)
|
|
mocker.patch("app.models.base.InferenceModel.download")
|
|
mocker.patch("app.models.facial_recognition.recognition.ArcFaceONNX")
|
|
path.return_value.__truediv__.return_value.__truediv__.return_value.suffix = ".armnn"
|
|
|
|
inputs = [SimpleNamespace(name="input.1", shape=("batch", 3, 224, 224))]
|
|
outputs = [SimpleNamespace(name="output.1", shape=("batch", 800))]
|
|
ann_session.return_value.get_inputs.return_value = inputs
|
|
ann_session.return_value.get_outputs.return_value = outputs
|
|
|
|
face_recognizer = FaceRecognizer("buffalo_s", model_format=ModelFormat.ARMNN, cache_dir=path)
|
|
face_recognizer.load()
|
|
|
|
assert face_recognizer.batch is False
|
|
update_dims.assert_not_called()
|
|
onnx.load.assert_not_called()
|
|
onnx.save.assert_not_called()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
class TestCache:
|
|
async def test_caches(self, mock_get_model: mock.Mock) -> None:
|
|
model_cache = ModelCache()
|
|
await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION)
|
|
await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION)
|
|
assert len(model_cache.cache._cache) == 1
|
|
mock_get_model.assert_called_once()
|
|
|
|
async def test_kwargs_used(self, mock_get_model: mock.Mock) -> None:
|
|
model_cache = ModelCache()
|
|
await model_cache.get(
|
|
"test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, cache_dir="test_cache"
|
|
)
|
|
mock_get_model.assert_called_once_with(
|
|
"test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, cache_dir="test_cache"
|
|
)
|
|
|
|
async def test_different_clip(self, mock_get_model: mock.Mock) -> None:
|
|
model_cache = ModelCache()
|
|
await model_cache.get("test_model_name", ModelType.VISUAL, ModelTask.SEARCH)
|
|
await model_cache.get("test_model_name", ModelType.TEXTUAL, ModelTask.SEARCH)
|
|
mock_get_model.assert_has_calls(
|
|
[
|
|
mock.call("test_model_name", ModelType.VISUAL, ModelTask.SEARCH),
|
|
mock.call("test_model_name", ModelType.TEXTUAL, ModelTask.SEARCH),
|
|
]
|
|
)
|
|
assert len(model_cache.cache._cache) == 2
|
|
|
|
@mock.patch("app.models.cache.OptimisticLock", autospec=True)
|
|
async def test_model_ttl(self, mock_lock_cls: mock.Mock, mock_get_model: mock.Mock) -> None:
|
|
model_cache = ModelCache()
|
|
await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, ttl=100)
|
|
mock_lock_cls.return_value.__aenter__.return_value.cas.assert_called_with(mock.ANY, ttl=100)
|
|
|
|
@mock.patch("app.models.cache.SimpleMemoryCache.expire")
|
|
async def test_revalidate_get(self, mock_cache_expire: mock.Mock, mock_get_model: mock.Mock) -> None:
|
|
model_cache = ModelCache(revalidate=True)
|
|
await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, ttl=100)
|
|
await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, ttl=100)
|
|
mock_cache_expire.assert_called_once_with(mock.ANY, 100)
|
|
|
|
async def test_profiling(self, mock_get_model: mock.Mock) -> None:
|
|
model_cache = ModelCache(profiling=True)
|
|
await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, ttl=100)
|
|
profiling = await model_cache.get_profiling()
|
|
assert isinstance(profiling, dict)
|
|
assert profiling == model_cache.cache.profiling
|
|
|
|
async def test_loads_mclip(self) -> None:
|
|
model_cache = ModelCache()
|
|
|
|
model = await model_cache.get("XLM-Roberta-Large-Vit-B-32", ModelType.TEXTUAL, ModelTask.SEARCH)
|
|
|
|
assert isinstance(model, MClipTextualEncoder)
|
|
assert model.model_name == "XLM-Roberta-Large-Vit-B-32"
|
|
|
|
async def test_raises_exception_if_invalid_model_type(self) -> None:
|
|
invalid: Any = SimpleNamespace(value="invalid")
|
|
model_cache = ModelCache()
|
|
|
|
with pytest.raises(ValueError):
|
|
await model_cache.get("XLM-Roberta-Large-Vit-B-32", ModelType.TEXTUAL, invalid)
|
|
|
|
async def test_raises_exception_if_unknown_model_name(self) -> None:
|
|
model_cache = ModelCache()
|
|
|
|
with pytest.raises(ValueError):
|
|
await model_cache.get("test_model_name", ModelType.TEXTUAL, ModelTask.SEARCH)
|
|
|
|
async def test_preloads_clip_models(self, monkeypatch: MonkeyPatch, mock_get_model: mock.Mock) -> None:
|
|
os.environ["MACHINE_LEARNING_PRELOAD__CLIP"] = "ViT-B-32__openai"
|
|
|
|
settings = Settings()
|
|
assert settings.preload is not None
|
|
assert settings.preload.clip == "ViT-B-32__openai"
|
|
|
|
model_cache = ModelCache()
|
|
monkeypatch.setattr("app.main.model_cache", model_cache)
|
|
|
|
await preload_models(settings.preload)
|
|
mock_get_model.assert_has_calls(
|
|
[
|
|
mock.call("ViT-B-32__openai", ModelType.TEXTUAL, ModelTask.SEARCH),
|
|
mock.call("ViT-B-32__openai", ModelType.VISUAL, ModelTask.SEARCH),
|
|
],
|
|
any_order=True,
|
|
)
|
|
|
|
async def test_preloads_facial_recognition_models(
|
|
self, monkeypatch: MonkeyPatch, mock_get_model: mock.Mock
|
|
) -> None:
|
|
os.environ["MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION"] = "buffalo_s"
|
|
|
|
settings = Settings()
|
|
assert settings.preload is not None
|
|
assert settings.preload.facial_recognition == "buffalo_s"
|
|
|
|
model_cache = ModelCache()
|
|
monkeypatch.setattr("app.main.model_cache", model_cache)
|
|
|
|
await preload_models(settings.preload)
|
|
mock_get_model.assert_has_calls(
|
|
[
|
|
mock.call("buffalo_s", ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION),
|
|
mock.call("buffalo_s", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION),
|
|
],
|
|
any_order=True,
|
|
)
|
|
|
|
async def test_preloads_all_models(self, monkeypatch: MonkeyPatch, mock_get_model: mock.Mock) -> None:
|
|
os.environ["MACHINE_LEARNING_PRELOAD__CLIP"] = "ViT-B-32__openai"
|
|
os.environ["MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION"] = "buffalo_s"
|
|
|
|
settings = Settings()
|
|
assert settings.preload is not None
|
|
assert settings.preload.clip == "ViT-B-32__openai"
|
|
assert settings.preload.facial_recognition == "buffalo_s"
|
|
|
|
model_cache = ModelCache()
|
|
monkeypatch.setattr("app.main.model_cache", model_cache)
|
|
|
|
await preload_models(settings.preload)
|
|
mock_get_model.assert_has_calls(
|
|
[
|
|
mock.call("ViT-B-32__openai", ModelType.TEXTUAL, ModelTask.SEARCH),
|
|
mock.call("ViT-B-32__openai", ModelType.VISUAL, ModelTask.SEARCH),
|
|
mock.call("buffalo_s", ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION),
|
|
mock.call("buffalo_s", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION),
|
|
],
|
|
any_order=True,
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
class TestLoad:
|
|
async def test_load(self) -> None:
|
|
mock_model = mock.Mock(spec=InferenceModel)
|
|
mock_model.loaded = False
|
|
mock_model.load_attempts = 0
|
|
|
|
res = await load(mock_model)
|
|
|
|
assert res is mock_model
|
|
mock_model.load.assert_called_once()
|
|
mock_model.clear_cache.assert_not_called()
|
|
|
|
async def test_load_returns_model_if_loaded(self) -> None:
|
|
mock_model = mock.Mock(spec=InferenceModel)
|
|
mock_model.loaded = True
|
|
|
|
res = await load(mock_model)
|
|
|
|
assert res is mock_model
|
|
mock_model.load.assert_not_called()
|
|
|
|
async def test_load_clears_cache_and_retries_if_os_error(self) -> None:
|
|
mock_model = mock.Mock(spec=InferenceModel)
|
|
mock_model.model_name = "test_model_name"
|
|
mock_model.model_type = ModelType.VISUAL
|
|
mock_model.model_task = ModelTask.SEARCH
|
|
mock_model.load.side_effect = [OSError, None]
|
|
mock_model.loaded = False
|
|
mock_model.load_attempts = 0
|
|
|
|
res = await load(mock_model)
|
|
|
|
assert res is mock_model
|
|
mock_model.clear_cache.assert_called_once()
|
|
assert mock_model.load.call_count == 2
|
|
|
|
async def test_load_raises_if_os_error_and_already_retried(self) -> None:
|
|
mock_model = mock.Mock(spec=InferenceModel)
|
|
mock_model.model_name = "test_model_name"
|
|
mock_model.model_type = ModelType.VISUAL
|
|
mock_model.model_task = ModelTask.SEARCH
|
|
mock_model.loaded = False
|
|
mock_model.load_attempts = 2
|
|
|
|
with pytest.raises(HTTPException):
|
|
await load(mock_model)
|
|
|
|
mock_model.clear_cache.assert_not_called()
|
|
mock_model.load.assert_not_called()
|
|
|
|
async def test_falls_back_to_onnx_if_other_format_does_not_exist(
|
|
self, exception: mock.Mock, warning: mock.Mock
|
|
) -> None:
|
|
mock_model = mock.Mock(spec=InferenceModel)
|
|
mock_model.model_name = "test_model_name"
|
|
mock_model.model_type = ModelType.VISUAL
|
|
mock_model.model_task = ModelTask.SEARCH
|
|
mock_model.model_format = ModelFormat.ARMNN
|
|
mock_model.loaded = False
|
|
mock_model.load_attempts = 0
|
|
error = FileNotFoundError()
|
|
mock_model.load.side_effect = [error, None]
|
|
|
|
await load(mock_model)
|
|
|
|
mock_model.clear_cache.assert_not_called()
|
|
assert mock_model.load.call_count == 2
|
|
exception.assert_called_once_with(error)
|
|
warning.assert_called_once_with("ARMNN is available, but model 'test_model_name' does not support it.")
|
|
mock_model.model_format = ModelFormat.ONNX
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
not settings.test_full,
|
|
reason="More time-consuming since it deploys the app and loads models.",
|
|
)
|
|
class TestEndpoints:
|
|
def test_clip_image_endpoint(
|
|
self, pil_image: Image.Image, responses: dict[str, Any], deployed_app: TestClient
|
|
) -> None:
|
|
byte_image = BytesIO()
|
|
pil_image.save(byte_image, format="jpeg")
|
|
expected = responses["clip"]["image"]
|
|
|
|
response = deployed_app.post(
|
|
"http://localhost:3003/predict",
|
|
data={"entries": json.dumps({"clip": {"visual": {"modelName": "ViT-B-32__openai"}}})},
|
|
files={"image": byte_image.getvalue()},
|
|
)
|
|
|
|
actual = response.json()
|
|
assert response.status_code == 200
|
|
assert isinstance(actual, dict)
|
|
assert isinstance(actual.get("clip", None), list)
|
|
assert np.allclose(expected, actual["clip"])
|
|
|
|
def test_clip_text_endpoint(self, responses: dict[str, Any], deployed_app: TestClient) -> None:
|
|
expected = responses["clip"]["text"]
|
|
|
|
response = deployed_app.post(
|
|
"http://localhost:3003/predict",
|
|
data={
|
|
"entries": json.dumps(
|
|
{
|
|
"clip": {"textual": {"modelName": "ViT-B-32__openai"}},
|
|
},
|
|
),
|
|
"text": "test search query",
|
|
},
|
|
)
|
|
|
|
actual = response.json()
|
|
assert response.status_code == 200
|
|
assert isinstance(actual, dict)
|
|
assert isinstance(actual.get("clip", None), list)
|
|
assert np.allclose(expected, actual["clip"])
|
|
|
|
def test_face_endpoint(self, pil_image: Image.Image, responses: dict[str, Any], deployed_app: TestClient) -> None:
|
|
byte_image = BytesIO()
|
|
pil_image.save(byte_image, format="jpeg")
|
|
|
|
response = deployed_app.post(
|
|
"http://localhost:3003/predict",
|
|
data={
|
|
"entries": json.dumps(
|
|
{
|
|
"facial-recognition": {
|
|
"detection": {"modelName": "buffalo_l", "options": {"minScore": 0.034}},
|
|
"recognition": {"modelName": "buffalo_l"},
|
|
}
|
|
}
|
|
)
|
|
},
|
|
files={"image": byte_image.getvalue()},
|
|
)
|
|
|
|
actual = response.json()
|
|
assert response.status_code == 200
|
|
assert isinstance(actual, dict)
|
|
assert actual.get("imageHeight", None) == responses["imageHeight"]
|
|
assert actual.get("imageWidth", None) == responses["imageWidth"]
|
|
assert "facial-recognition" in actual and isinstance(actual["facial-recognition"], list)
|
|
assert len(actual["facial-recognition"]) == len(responses["facial-recognition"])
|
|
|
|
for expected_face, actual_face in zip(responses["facial-recognition"], actual["facial-recognition"]):
|
|
assert expected_face["boundingBox"] == actual_face["boundingBox"]
|
|
assert np.allclose(expected_face["embedding"], actual_face["embedding"])
|
|
assert np.allclose(expected_face["score"], actual_face["score"])
|