1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-25 05:02:46 +01:00
immich/machine-learning/app/models/facial_recognition/recognition.py
Mert 2b1b43a7e4
feat(ml): composable ml (#9973)
* modularize model classes

* various fixes

* expose port

* change response

* round coordinates

* simplify preload

* update server

* simplify interface

simplify

* update tests

* composable endpoint

* cleanup

fixes

remove unnecessary interface

support text input, cleanup

* ew camelcase

* update server

server fixes

fix typing

* ml fixes

update locustfile

fixes

* cleaner response

* better repo response

* update tests

formatting and typing

rename

* undo compose change

* linting

fix type

actually fix typing

* stricter typing

fix detection-only response

no need for defaultdict

* update spec file

update api

linting

* update e2e

* unnecessary dimension

* remove commented code

* remove duplicate code

* remove unused imports

* add batch dim
2024-06-07 03:09:47 +00:00

77 lines
3.2 KiB
Python

from pathlib import Path
from typing import Any
import numpy as np
import onnx
import onnxruntime as ort
from insightface.model_zoo import ArcFaceONNX
from insightface.utils.face_align import norm_crop
from numpy.typing import NDArray
from onnx.tools.update_model_dims import update_inputs_outputs_dims
from PIL import Image
from app.config import clean_name, log
from app.models.base import InferenceModel
from app.models.transforms import decode_cv2
from app.schemas import FaceDetectionOutput, FacialRecognitionOutput, ModelSession, ModelTask, ModelType
class FaceRecognizer(InferenceModel):
depends = [(ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)]
identity = (ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION)
def __init__(
self,
model_name: str,
min_score: float = 0.7,
cache_dir: Path | str | None = None,
**model_kwargs: Any,
) -> None:
self.min_score = model_kwargs.pop("minScore", min_score)
super().__init__(clean_name(model_name), cache_dir, **model_kwargs)
def _load(self) -> ModelSession:
session = self._make_session(self.model_path)
if not self._has_batch_dim(session):
self._add_batch_dim(self.model_path)
session = self._make_session(self.model_path)
self.model = ArcFaceONNX(
self.model_path.with_suffix(".onnx").as_posix(),
session=session,
)
return session
def _predict(
self, inputs: NDArray[np.uint8] | bytes | Image.Image, faces: FaceDetectionOutput, **kwargs: Any
) -> FacialRecognitionOutput:
if faces["boxes"].shape[0] == 0:
return []
inputs = decode_cv2(inputs)
embeddings: NDArray[np.float32] = self.model.get_feat(self._crop(inputs, faces))
return self.postprocess(faces, embeddings)
def postprocess(self, faces: FaceDetectionOutput, embeddings: NDArray[np.float32]) -> FacialRecognitionOutput:
return [
{
"boundingBox": {"x1": x1, "y1": y1, "x2": x2, "y2": y2},
"embedding": embedding,
"score": score,
}
for (x1, y1, x2, y2), embedding, score in zip(faces["boxes"], embeddings, faces["scores"])
]
def _crop(self, image: NDArray[np.uint8], faces: FaceDetectionOutput) -> list[NDArray[np.uint8]]:
return [norm_crop(image, landmark) for landmark in faces["landmarks"]]
def _has_batch_dim(self, session: ort.InferenceSession) -> bool:
return not isinstance(session, ort.InferenceSession) or session.get_inputs()[0].shape[0] == "batch"
def _add_batch_dim(self, model_path: Path) -> None:
log.debug(f"Adding batch dimension to model {model_path}")
proto = onnx.load(model_path)
static_input_dims = [shape.dim_value for shape in proto.graph.input[0].type.tensor_type.shape.dim[1:]]
static_output_dims = [shape.dim_value for shape in proto.graph.output[0].type.tensor_type.shape.dim[1:]]
input_dims = {proto.graph.input[0].name: ["batch"] + static_input_dims}
output_dims = {proto.graph.output[0].name: ["batch"] + static_output_dims}
updated_proto = update_inputs_outputs_dims(proto, input_dims, output_dims)
onnx.save(updated_proto, model_path)