mirror of
https://github.com/immich-app/immich.git
synced 2025-01-10 13:56:47 +01:00
f44fa45aa0
* add unicorn to eslint * fix lint errors for cli * fix merge * fix album name extraction * Update cli/src/commands/upload.command.ts Co-authored-by: Ben McCann <322311+benmccann@users.noreply.github.com> * es2k23 * use lowercase os * return undefined album name * fix bug in asset response dto * auto fix issues * fix server code style * es2022 and formatting * fix compilation error * fix test * fix config load * fix last lint errors * set string type * bump ts * start work on web * web formatting * Fix UUIDParamDto as UUIDParamDto * fix library service lint * fix web errors * fix errors * formatting * wip * lints fixed * web can now start * alphabetical package json * rename error * chore: clean up --------- Co-authored-by: Ben McCann <322311+benmccann@users.noreply.github.com> Co-authored-by: Jason Rasmussen <jrasm91@gmail.com>
77 lines
2.5 KiB
TypeScript
77 lines
2.5 KiB
TypeScript
import {
|
|
CLIPConfig,
|
|
CLIPMode,
|
|
DetectFaceResult,
|
|
IMachineLearningRepository,
|
|
ModelConfig,
|
|
ModelType,
|
|
RecognitionConfig,
|
|
TextModelInput,
|
|
VisionModelInput,
|
|
} from '@app/domain';
|
|
import { Injectable } from '@nestjs/common';
|
|
import { readFile } from 'node:fs/promises';
|
|
|
|
const errorPrefix = 'Machine learning request';
|
|
|
|
@Injectable()
|
|
export class MachineLearningRepository implements IMachineLearningRepository {
|
|
private async predict<T>(url: string, input: TextModelInput | VisionModelInput, config: ModelConfig): Promise<T> {
|
|
const formData = await this.getFormData(input, config);
|
|
|
|
const res = await fetch(`${url}/predict`, { method: 'POST', body: formData }).catch((error: Error | any) => {
|
|
throw new Error(`${errorPrefix} to "${url}" failed with ${error?.cause || error}`);
|
|
});
|
|
|
|
if (res.status >= 400) {
|
|
const modelType = config.modelType ? ` for ${config.modelType.replace('-', ' ')}` : '';
|
|
throw new Error(`${errorPrefix}${modelType} failed with status ${res.status}: ${res.statusText}`);
|
|
}
|
|
return res.json();
|
|
}
|
|
|
|
detectFaces(url: string, input: VisionModelInput, config: RecognitionConfig): Promise<DetectFaceResult[]> {
|
|
return this.predict<DetectFaceResult[]>(url, input, { ...config, modelType: ModelType.FACIAL_RECOGNITION });
|
|
}
|
|
|
|
encodeImage(url: string, input: VisionModelInput, config: CLIPConfig): Promise<number[]> {
|
|
return this.predict<number[]>(url, input, {
|
|
...config,
|
|
modelType: ModelType.CLIP,
|
|
mode: CLIPMode.VISION,
|
|
} as CLIPConfig);
|
|
}
|
|
|
|
encodeText(url: string, input: TextModelInput, config: CLIPConfig): Promise<number[]> {
|
|
return this.predict<number[]>(url, input, {
|
|
...config,
|
|
modelType: ModelType.CLIP,
|
|
mode: CLIPMode.TEXT,
|
|
} as CLIPConfig);
|
|
}
|
|
|
|
async getFormData(input: TextModelInput | VisionModelInput, config: ModelConfig): Promise<FormData> {
|
|
const formData = new FormData();
|
|
const { enabled, modelName, modelType, ...options } = config;
|
|
if (!enabled) {
|
|
throw new Error(`${modelType} is not enabled`);
|
|
}
|
|
|
|
formData.append('modelName', modelName);
|
|
if (modelType) {
|
|
formData.append('modelType', modelType);
|
|
}
|
|
if (options) {
|
|
formData.append('options', JSON.stringify(options));
|
|
}
|
|
if ('imagePath' in input) {
|
|
formData.append('image', new Blob([await readFile(input.imagePath)]));
|
|
} else if ('text' in input) {
|
|
formData.append('text', input.text);
|
|
} else {
|
|
throw new Error('Invalid input');
|
|
}
|
|
|
|
return formData;
|
|
}
|
|
}
|