1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-07 20:36:48 +01:00
immich/machine-learning/app/models/cache.py
Mert 87a0ba3db3
feat(ml): export clip models to ONNX and host models on Hugging Face (#4700)
* export clip models

* export to hf

refactored export code

* export mclip, general refactoring

cleanup

* updated conda deps

* do transforms with pillow and numpy, add tokenization config to export, general refactoring

* moved conda dockerfile, re-added poetry

* minor fixes

* updated link

* updated tests

* removed `requirements.txt` from workflow

* fixed mimalloc path

* removed torchvision

* cleaner np typing

* review suggestions

* update default model name

* update test
2023-10-31 05:02:04 -05:00

99 lines
3.2 KiB
Python

from typing import Any
from aiocache.backends.memory import SimpleMemoryCache
from aiocache.lock import OptimisticLock
from aiocache.plugins import BasePlugin, TimingPlugin
from app.models import from_model_type
from ..schemas import ModelType
from .base import InferenceModel
class ModelCache:
"""Fetches a model from an in-memory cache, instantiating it if it's missing."""
def __init__(
self,
ttl: float | None = None,
revalidate: bool = False,
timeout: int | None = None,
profiling: bool = False,
) -> None:
"""
Args:
ttl: Unloads model after this duration. Disabled if None. Defaults to None.
revalidate: Resets TTL on cache hit. Useful to keep models in memory while active. Defaults to False.
timeout: Maximum allowed time for model to load. Disabled if None. Defaults to None.
profiling: Collects metrics for cache operations, adding slight overhead. Defaults to False.
"""
self.ttl = ttl
plugins = []
if revalidate:
plugins.append(RevalidationPlugin())
if profiling:
plugins.append(TimingPlugin())
self.cache = SimpleMemoryCache(ttl=ttl, timeout=timeout, plugins=plugins, namespace=None)
async def get(self, model_name: str, model_type: ModelType, **model_kwargs: Any) -> InferenceModel:
"""
Args:
model_name: Name of model in the model hub used for the task.
model_type: Model type or task, which determines which model zoo is used.
Returns:
model: The requested model.
"""
key = f"{model_name}{model_type.value}{model_kwargs.get('mode', '')}"
async with OptimisticLock(self.cache, key) as lock:
model = await self.cache.get(key)
if model is None:
model = from_model_type(model_type, model_name, **model_kwargs)
await lock.cas(model, ttl=self.ttl)
return model
async def get_profiling(self) -> dict[str, float] | None:
if not hasattr(self.cache, "profiling"):
return None
return self.cache.profiling # type: ignore
class RevalidationPlugin(BasePlugin):
"""Revalidates cache item's TTL after cache hit."""
async def post_get(
self,
client: SimpleMemoryCache,
key: str,
ret: Any | None = None,
namespace: str | None = None,
**kwargs: Any,
) -> None:
if ret is None:
return
if namespace is not None:
key = client.build_key(key, namespace)
if key in client._handlers:
await client.expire(key, client.ttl)
async def post_multi_get(
self,
client: SimpleMemoryCache,
keys: list[str],
ret: list[Any] | None = None,
namespace: str | None = None,
**kwargs: Any,
) -> None:
if ret is None:
return
for key, val in zip(keys, ret):
if namespace is not None:
key = client.build_key(key, namespace)
if val is not None and key in client._handlers:
await client.expire(key, client.ttl)