1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-19 18:26:46 +01:00
immich/machine-learning/app/models/facial_recognition.py
Mert df1e8679d9
chore(ml): added testing and github workflow (#2969)
* added testing

* github action for python, made mypy happy

* formatted with black

* minor fixes and styling

* test model cache

* cache test dependencies

* narrowed model cache tests

* moved endpoint tests to their own class

* cleaned up fixtures

* formatting

* removed unused dep
2023-06-27 18:21:33 -05:00

60 lines
1.7 KiB
Python

from pathlib import Path
from typing import Any
import cv2
from insightface.app import FaceAnalysis
from ..config import settings
from ..schemas import ModelType
from .base import InferenceModel
class FaceRecognizer(InferenceModel):
_model_type = ModelType.FACIAL_RECOGNITION
def __init__(
self,
model_name: str,
min_score: float = settings.min_face_score,
cache_dir: Path | str | None = None,
**model_kwargs: Any,
) -> None:
self.min_score = min_score
super().__init__(model_name, cache_dir, **model_kwargs)
def load(self, **model_kwargs: Any) -> None:
self.model = FaceAnalysis(
name=self.model_name,
root=self.cache_dir.as_posix(),
allowed_modules=["detection", "recognition"],
**model_kwargs,
)
self.model.prepare(
ctx_id=0,
det_thresh=self.min_score,
det_size=(640, 640),
)
def predict(self, image: cv2.Mat) -> list[dict[str, Any]]:
height, width, _ = image.shape
results = []
faces = self.model.get(image)
for face in faces:
x1, y1, x2, y2 = face.bbox
results.append(
{
"imageWidth": width,
"imageHeight": height,
"boundingBox": {
"x1": round(x1),
"y1": round(y1),
"x2": round(x2),
"y2": round(y2),
},
"score": face.det_score.item(),
"embedding": face.normed_embedding.tolist(),
}
)
return results