1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-06 03:46:47 +01:00
immich/machine-learning/app/models/clip.py
Mert 328a58ac0d
feat(ml): add face models (#4952)
added models to config dropdown

fixed downloading

updated tests

use hf for face models

formatting
2023-11-11 19:04:49 -06:00

164 lines
5.4 KiB
Python

import json
from abc import abstractmethod
from functools import cached_property
from io import BytesIO
from pathlib import Path
from typing import Any, Literal
import numpy as np
import onnxruntime as ort
from PIL import Image
from transformers import AutoTokenizer
from app.config import clean_name, log
from app.models.transforms import crop, get_pil_resampling, normalize, resize, to_numpy
from app.schemas import ModelType, ndarray_f32, ndarray_i32, ndarray_i64
from .base import InferenceModel
class BaseCLIPEncoder(InferenceModel):
_model_type = ModelType.CLIP
def __init__(
self,
model_name: str,
cache_dir: str | None = None,
mode: Literal["text", "vision"] | None = None,
**model_kwargs: Any,
) -> None:
self.mode = mode
super().__init__(model_name, cache_dir, **model_kwargs)
def _load(self) -> None:
if self.mode == "text" or self.mode is None:
log.debug(f"Loading clip text model '{self.model_name}'")
self.text_model = ort.InferenceSession(
self.textual_path.as_posix(),
sess_options=self.sess_options,
providers=self.providers,
provider_options=self.provider_options,
)
if self.mode == "vision" or self.mode is None:
log.debug(f"Loading clip vision model '{self.model_name}'")
self.vision_model = ort.InferenceSession(
self.visual_path.as_posix(),
sess_options=self.sess_options,
providers=self.providers,
provider_options=self.provider_options,
)
def _predict(self, image_or_text: Image.Image | str) -> list[float]:
if isinstance(image_or_text, bytes):
image_or_text = Image.open(BytesIO(image_or_text))
match image_or_text:
case Image.Image():
if self.mode == "text":
raise TypeError("Cannot encode image as text-only model")
outputs = self.vision_model.run(None, self.transform(image_or_text))
case str():
if self.mode == "vision":
raise TypeError("Cannot encode text as vision-only model")
outputs = self.text_model.run(None, self.tokenize(image_or_text))
case _:
raise TypeError(f"Expected Image or str, but got: {type(image_or_text)}")
return outputs[0][0].tolist()
@abstractmethod
def tokenize(self, text: str) -> dict[str, ndarray_i32]:
pass
@abstractmethod
def transform(self, image: Image.Image) -> dict[str, ndarray_f32]:
pass
@property
def textual_dir(self) -> Path:
return self.cache_dir / "textual"
@property
def visual_dir(self) -> Path:
return self.cache_dir / "visual"
@property
def model_cfg_path(self) -> Path:
return self.cache_dir / "config.json"
@property
def textual_path(self) -> Path:
return self.textual_dir / "model.onnx"
@property
def visual_path(self) -> Path:
return self.visual_dir / "model.onnx"
@property
def preprocess_cfg_path(self) -> Path:
return self.visual_dir / "preprocess_cfg.json"
@property
def cached(self) -> bool:
return self.textual_path.is_file() and self.visual_path.is_file()
class OpenCLIPEncoder(BaseCLIPEncoder):
def __init__(
self,
model_name: str,
cache_dir: str | None = None,
mode: Literal["text", "vision"] | None = None,
**model_kwargs: Any,
) -> None:
super().__init__(clean_name(model_name), cache_dir, mode, **model_kwargs)
def _load(self) -> None:
super()._load()
self.tokenizer = AutoTokenizer.from_pretrained(self.textual_dir)
self.sequence_length = self.model_cfg["text_cfg"]["context_length"]
self.size = (
self.preprocess_cfg["size"][0] if type(self.preprocess_cfg["size"]) == list else self.preprocess_cfg["size"]
)
self.resampling = get_pil_resampling(self.preprocess_cfg["interpolation"])
self.mean = np.array(self.preprocess_cfg["mean"], dtype=np.float32)
self.std = np.array(self.preprocess_cfg["std"], dtype=np.float32)
def tokenize(self, text: str) -> dict[str, ndarray_i32]:
input_ids: ndarray_i64 = self.tokenizer(
text,
max_length=self.sequence_length,
return_tensors="np",
return_attention_mask=False,
padding="max_length",
truncation=True,
).input_ids
return {"text": input_ids.astype(np.int32)}
def transform(self, image: Image.Image) -> dict[str, ndarray_f32]:
image = resize(image, self.size)
image = crop(image, self.size)
image_np = to_numpy(image)
image_np = normalize(image_np, self.mean, self.std)
return {"image": np.expand_dims(image_np.transpose(2, 0, 1), 0)}
@cached_property
def model_cfg(self) -> dict[str, Any]:
return json.load(self.model_cfg_path.open())
@cached_property
def preprocess_cfg(self) -> dict[str, Any]:
return json.load(self.preprocess_cfg_path.open())
class MCLIPEncoder(OpenCLIPEncoder):
def tokenize(self, text: str) -> dict[str, ndarray_i32]:
tokens: dict[str, ndarray_i64] = self.tokenizer(text, return_tensors="np")
return {k: v.astype(np.int32) for k, v in tokens.items()}