1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-09 21:36:46 +01:00
immich/machine-learning/export/models/openclip.py
Mert 935f471ccb
chore(ml): use strict mypy (#5001)
* improved typing

* improved export typing

* strict mypy & check export folder

* formatting

* add formatting checks for export folder

* re-added init call
2023-11-13 10:18:46 -06:00

114 lines
3.9 KiB
Python

import tempfile
import warnings
from dataclasses import dataclass, field
from math import e
from pathlib import Path
import open_clip
import torch
from transformers import AutoTokenizer
from .optimize import optimize
from .util import get_model_path, save_config
@dataclass
class OpenCLIPModelConfig:
name: str
pretrained: str
image_size: int = field(init=False)
sequence_length: int = field(init=False)
def __post_init__(self) -> None:
open_clip_cfg = open_clip.get_model_config(self.name)
if open_clip_cfg is None:
raise ValueError(f"Unknown model {self.name}")
self.image_size = open_clip_cfg["vision_cfg"]["image_size"]
self.sequence_length = open_clip_cfg["text_cfg"]["context_length"]
def to_onnx(
model_cfg: OpenCLIPModelConfig,
output_dir_visual: Path | str | None = None,
output_dir_textual: Path | str | None = None,
) -> None:
with tempfile.TemporaryDirectory() as tmpdir:
model = open_clip.create_model(
model_cfg.name,
pretrained=model_cfg.pretrained,
jit=False,
cache_dir=tmpdir,
require_pretrained=True,
)
text_vision_cfg = open_clip.get_model_config(model_cfg.name)
for param in model.parameters():
param.requires_grad_(False)
if output_dir_visual is not None:
output_dir_visual = Path(output_dir_visual)
visual_path = get_model_path(output_dir_visual)
save_config(open_clip.get_model_preprocess_cfg(model), output_dir_visual / "preprocess_cfg.json")
save_config(text_vision_cfg, output_dir_visual.parent / "config.json")
export_image_encoder(model, model_cfg, visual_path)
optimize(visual_path)
if output_dir_textual is not None:
output_dir_textual = Path(output_dir_textual)
textual_path = get_model_path(output_dir_textual)
tokenizer_name = text_vision_cfg["text_cfg"].get("hf_tokenizer_name", "openai/clip-vit-base-patch32")
AutoTokenizer.from_pretrained(tokenizer_name).save_pretrained(output_dir_textual)
export_text_encoder(model, model_cfg, textual_path)
optimize(textual_path)
def export_image_encoder(model: open_clip.CLIP, model_cfg: OpenCLIPModelConfig, output_path: Path | str) -> None:
output_path = Path(output_path)
def encode_image(image: torch.Tensor) -> torch.Tensor:
output = model.encode_image(image, normalize=True)
assert isinstance(output, torch.Tensor)
return output
args = (torch.randn(1, 3, model_cfg.image_size, model_cfg.image_size),)
traced = torch.jit.trace(encode_image, args) # type: ignore[no-untyped-call]
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
torch.onnx.export(
traced,
args,
output_path.as_posix(),
input_names=["image"],
output_names=["image_embedding"],
opset_version=17,
dynamic_axes={"image": {0: "batch_size"}},
)
def export_text_encoder(model: open_clip.CLIP, model_cfg: OpenCLIPModelConfig, output_path: Path | str) -> None:
output_path = Path(output_path)
def encode_text(text: torch.Tensor) -> torch.Tensor:
output = model.encode_text(text, normalize=True)
assert isinstance(output, torch.Tensor)
return output
args = (torch.ones(1, model_cfg.sequence_length, dtype=torch.int32),)
traced = torch.jit.trace(encode_text, args) # type: ignore[no-untyped-call]
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
torch.onnx.export(
traced,
args,
output_path.as_posix(),
input_names=["text"],
output_names=["text_embedding"],
opset_version=17,
dynamic_axes={"text": {0: "batch_size"}},
)