1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-19 18:26:46 +01:00
immich/machine-learning/app/test_main.py
Fynn Petersen-Frey 753292956e
feat(ml): ARMNN acceleration (#5667)
* feat(ml): ARMNN acceleration for CLIP

* wrap ANN as ONNX-Session

* strict typing

* normalize ARMNN CLIP embedding

* mutex to handle concurrent execution

* make inputs contiguous

* fine-grained locking; concurrent network execution

---------

Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com>
2024-01-11 18:26:46 +01:00

212 lines
8.7 KiB
Python

import json
import pickle
from io import BytesIO
from pathlib import Path
from typing import Any, Callable
from unittest import mock
import cv2
import numpy as np
import pytest
from fastapi.testclient import TestClient
from PIL import Image
from pytest_mock import MockerFixture
from .config import settings
from .models.base import InferenceModel, PicklableSessionOptions
from .models.cache import ModelCache
from .models.clip import OpenCLIPEncoder
from .models.facial_recognition import FaceRecognizer
from .schemas import ModelType
class TestCLIP:
embedding = np.random.rand(512).astype(np.float32)
cache_dir = Path("test_cache")
def test_basic_image(
self,
pil_image: Image.Image,
mocker: MockerFixture,
clip_model_cfg: dict[str, Any],
clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
) -> None:
mocker.patch.object(OpenCLIPEncoder, "download")
mocker.patch.object(OpenCLIPEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(OpenCLIPEncoder, "preprocess_cfg", clip_preprocess_cfg)
mocker.patch.object(OpenCLIPEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
mocked = mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
mocked.run.return_value = [[self.embedding]]
mocker.patch("app.models.clip.Tokenizer.from_file", autospec=True)
clip_encoder = OpenCLIPEncoder("ViT-B-32::openai", cache_dir="test_cache", mode="vision")
embedding = clip_encoder.predict(pil_image)
assert clip_encoder.mode == "vision"
assert isinstance(embedding, np.ndarray)
assert embedding.shape[0] == clip_model_cfg["embed_dim"]
assert embedding.dtype == np.float32
mocked.run.assert_called_once()
def test_basic_text(
self,
mocker: MockerFixture,
clip_model_cfg: dict[str, Any],
clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
) -> None:
mocker.patch.object(OpenCLIPEncoder, "download")
mocker.patch.object(OpenCLIPEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(OpenCLIPEncoder, "preprocess_cfg", clip_preprocess_cfg)
mocker.patch.object(OpenCLIPEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
mocked = mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
mocked.run.return_value = [[self.embedding]]
mocker.patch("app.models.clip.Tokenizer.from_file", autospec=True)
clip_encoder = OpenCLIPEncoder("ViT-B-32::openai", cache_dir="test_cache", mode="text")
embedding = clip_encoder.predict("test search query")
assert clip_encoder.mode == "text"
assert isinstance(embedding, np.ndarray)
assert embedding.shape[0] == clip_model_cfg["embed_dim"]
assert embedding.dtype == np.float32
mocked.run.assert_called_once()
class TestFaceRecognition:
def test_set_min_score(self, mocker: MockerFixture) -> None:
mocker.patch.object(FaceRecognizer, "load")
face_recognizer = FaceRecognizer("buffalo_s", cache_dir="test_cache", min_score=0.5)
assert face_recognizer.min_score == 0.5
def test_basic(self, cv_image: cv2.Mat, mocker: MockerFixture) -> None:
mocker.patch.object(FaceRecognizer, "load")
face_recognizer = FaceRecognizer("buffalo_s", min_score=0.0, cache_dir="test_cache")
det_model = mock.Mock()
num_faces = 2
bbox = np.random.rand(num_faces, 4).astype(np.float32)
score = np.array([[0.67]] * num_faces).astype(np.float32)
kpss = np.random.rand(num_faces, 5, 2).astype(np.float32)
det_model.detect.return_value = (np.concatenate([bbox, score], axis=-1), kpss)
face_recognizer.det_model = det_model
rec_model = mock.Mock()
embedding = np.random.rand(num_faces, 512).astype(np.float32)
rec_model.get_feat.return_value = embedding
face_recognizer.rec_model = rec_model
faces = face_recognizer.predict(cv_image)
assert len(faces) == num_faces
for face in faces:
assert face["imageHeight"] == 800
assert face["imageWidth"] == 600
assert isinstance(face["embedding"], np.ndarray)
assert face["embedding"].shape[0] == 512
assert face["embedding"].dtype == np.float32
det_model.detect.assert_called_once()
assert rec_model.get_feat.call_count == num_faces
@pytest.mark.asyncio
class TestCache:
async def test_caches(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
assert len(model_cache.cache._cache) == 1
mock_get_model.assert_called_once()
async def test_kwargs_used(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION, cache_dir="test_cache")
mock_get_model.assert_called_once_with(ModelType.FACIAL_RECOGNITION, "test_model_name", cache_dir="test_cache")
async def test_different_clip(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get("test_image_model_name", ModelType.CLIP)
await model_cache.get("test_text_model_name", ModelType.CLIP)
mock_get_model.assert_has_calls(
[
mock.call(ModelType.CLIP, "test_image_model_name"),
mock.call(ModelType.CLIP, "test_text_model_name"),
]
)
assert len(model_cache.cache._cache) == 2
@mock.patch("app.models.cache.OptimisticLock", autospec=True)
async def test_model_ttl(self, mock_lock_cls: mock.Mock, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache(ttl=100)
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
mock_lock_cls.return_value.__aenter__.return_value.cas.assert_called_with(mock.ANY, ttl=100)
@mock.patch("app.models.cache.SimpleMemoryCache.expire")
async def test_revalidate(self, mock_cache_expire: mock.Mock, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache(ttl=100, revalidate=True)
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
mock_cache_expire.assert_called_once_with(mock.ANY, 100)
@pytest.mark.skipif(
not settings.test_full,
reason="More time-consuming since it deploys the app and loads models.",
)
class TestEndpoints:
def test_clip_image_endpoint(
self, pil_image: Image.Image, responses: dict[str, Any], deployed_app: TestClient
) -> None:
byte_image = BytesIO()
pil_image.save(byte_image, format="jpeg")
response = deployed_app.post(
"http://localhost:3003/predict",
data={"modelName": "ViT-B-32::openai", "modelType": "clip", "options": json.dumps({"mode": "vision"})},
files={"image": byte_image.getvalue()},
)
assert response.status_code == 200
assert response.json() == responses["clip"]["image"]
def test_clip_text_endpoint(self, responses: dict[str, Any], deployed_app: TestClient) -> None:
response = deployed_app.post(
"http://localhost:3003/predict",
data={
"modelName": "ViT-B-32::openai",
"modelType": "clip",
"text": "test search query",
"options": json.dumps({"mode": "text"}),
},
)
assert response.status_code == 200
assert response.json() == responses["clip"]["text"]
def test_face_endpoint(self, pil_image: Image.Image, responses: dict[str, Any], deployed_app: TestClient) -> None:
byte_image = BytesIO()
pil_image.save(byte_image, format="jpeg")
response = deployed_app.post(
"http://localhost:3003/predict",
data={
"modelName": "buffalo_l",
"modelType": "facial-recognition",
"options": json.dumps({"minScore": 0.034}),
},
files={"image": byte_image.getvalue()},
)
assert response.status_code == 200
assert response.json() == responses["facial-recognition"]
def test_sess_options() -> None:
sess_options = PicklableSessionOptions()
sess_options.intra_op_num_threads = 1
sess_options.inter_op_num_threads = 1
pickled = pickle.dumps(sess_options)
unpickled = pickle.loads(pickled)
assert unpickled.intra_op_num_threads == 1
assert unpickled.inter_op_num_threads == 1