1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-22 11:42:46 +01:00
immich/machine-learning/app/models/ann.py
Fynn Petersen-Frey 753292956e
feat(ml): ARMNN acceleration (#5667)
* feat(ml): ARMNN acceleration for CLIP

* wrap ANN as ONNX-Session

* strict typing

* normalize ARMNN CLIP embedding

* mutex to handle concurrent execution

* make inputs contiguous

* fine-grained locking; concurrent network execution

---------

Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com>
2024-01-11 18:26:46 +01:00

68 lines
2.1 KiB
Python

from __future__ import annotations
from pathlib import Path
from typing import Any, NamedTuple
from numpy import ascontiguousarray
from ann.ann import Ann
from app.schemas import ndarray_f32, ndarray_i32
from ..config import log, settings
class AnnSession:
"""
Wrapper for ANN to be drop-in replacement for ONNX session.
"""
def __init__(self, model_path: Path):
tuning_file = Path(settings.cache_folder) / "gpu-tuning.ann"
with tuning_file.open(mode="a"):
# make sure tuning file exists (without clearing contents)
# once filled, the tuning file reduces the cost/time of the first
# inference after model load by 10s of seconds
pass
self.ann = Ann(tuning_level=3, tuning_file=tuning_file.as_posix())
log.info("Loading ANN model %s ...", model_path)
cache_file = model_path.with_suffix(".anncache")
save = False
if not cache_file.is_file():
save = True
with cache_file.open(mode="a"):
# create empty model cache file
pass
self.model = self.ann.load(
model_path.as_posix(),
save_cached_network=save,
cached_network_path=cache_file.as_posix(),
)
log.info("Loaded ANN model with ID %d", self.model)
def __del__(self) -> None:
self.ann.unload(self.model)
log.info("Unloaded ANN model %d", self.model)
self.ann.destroy()
def get_inputs(self) -> list[AnnNode]:
shapes = self.ann.input_shapes[self.model]
return [AnnNode(None, s) for s in shapes]
def get_outputs(self) -> list[AnnNode]:
shapes = self.ann.output_shapes[self.model]
return [AnnNode(None, s) for s in shapes]
def run(
self,
output_names: list[str] | None,
input_feed: dict[str, ndarray_f32] | dict[str, ndarray_i32],
run_options: Any = None,
) -> list[ndarray_f32]:
inputs: list[ndarray_f32] = [ascontiguousarray(v) for v in input_feed.values()]
return self.ann.execute(self.model, inputs)
class AnnNode(NamedTuple):
name: str | None
shape: tuple[int, ...]