1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-07 12:26:47 +01:00
immich/machine-learning/app/models/ann.py
renovate[bot] 20be42cec0
chore(deps): update machine-learning (#6302)
* chore(deps): update machine-learning

* fix typing, use new lifespan syntax

* wrap in try / finally

* move log

---------

Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com>
Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com>
2024-01-13 05:00:09 +00:00

68 lines
2.1 KiB
Python

from __future__ import annotations
from pathlib import Path
from typing import Any, NamedTuple
import numpy as np
from numpy.typing import NDArray
from ann.ann import Ann
from ..config import log, settings
class AnnSession:
"""
Wrapper for ANN to be drop-in replacement for ONNX session.
"""
def __init__(self, model_path: Path):
tuning_file = Path(settings.cache_folder) / "gpu-tuning.ann"
with tuning_file.open(mode="a"):
# make sure tuning file exists (without clearing contents)
# once filled, the tuning file reduces the cost/time of the first
# inference after model load by 10s of seconds
pass
self.ann = Ann(tuning_level=3, tuning_file=tuning_file.as_posix())
log.info("Loading ANN model %s ...", model_path)
cache_file = model_path.with_suffix(".anncache")
save = False
if not cache_file.is_file():
save = True
with cache_file.open(mode="a"):
# create empty model cache file
pass
self.model = self.ann.load(
model_path.as_posix(),
save_cached_network=save,
cached_network_path=cache_file.as_posix(),
)
log.info("Loaded ANN model with ID %d", self.model)
def __del__(self) -> None:
self.ann.unload(self.model)
log.info("Unloaded ANN model %d", self.model)
self.ann.destroy()
def get_inputs(self) -> list[AnnNode]:
shapes = self.ann.input_shapes[self.model]
return [AnnNode(None, s) for s in shapes]
def get_outputs(self) -> list[AnnNode]:
shapes = self.ann.output_shapes[self.model]
return [AnnNode(None, s) for s in shapes]
def run(
self,
output_names: list[str] | None,
input_feed: dict[str, NDArray[np.float32]] | dict[str, NDArray[np.int32]],
run_options: Any = None,
) -> list[NDArray[np.float32]]:
inputs: list[NDArray[np.float32]] = [np.ascontiguousarray(v) for v in input_feed.values()]
return self.ann.execute(self.model, inputs)
class AnnNode(NamedTuple):
name: str | None
shape: tuple[int, ...]