mirror of
https://github.com/immich-app/immich.git
synced 2025-01-04 02:46:47 +01:00
160 lines
5.7 KiB
Python
160 lines
5.7 KiB
Python
from __future__ import annotations
|
|
|
|
import pickle
|
|
from abc import ABC, abstractmethod
|
|
from pathlib import Path
|
|
from shutil import rmtree
|
|
from typing import Any
|
|
from zipfile import BadZipFile
|
|
|
|
import onnxruntime as ort
|
|
from onnxruntime.capi.onnxruntime_pybind11_state import InvalidProtobuf # type: ignore
|
|
|
|
from ..config import get_cache_dir, log, settings
|
|
from ..schemas import ModelType
|
|
|
|
|
|
class InferenceModel(ABC):
|
|
_model_type: ModelType
|
|
|
|
def __init__(
|
|
self,
|
|
model_name: str,
|
|
cache_dir: Path | str | None = None,
|
|
eager: bool = True,
|
|
inter_op_num_threads: int = settings.model_inter_op_threads,
|
|
intra_op_num_threads: int = settings.model_intra_op_threads,
|
|
**model_kwargs: Any,
|
|
) -> None:
|
|
self.model_name = model_name
|
|
self._loaded = False
|
|
self._cache_dir = Path(cache_dir) if cache_dir is not None else get_cache_dir(model_name, self.model_type)
|
|
loader = self.load if eager else self.download
|
|
|
|
self.providers = model_kwargs.pop("providers", ["CPUExecutionProvider"])
|
|
# don't pre-allocate more memory than needed
|
|
self.provider_options = model_kwargs.pop(
|
|
"provider_options", [{"arena_extend_strategy": "kSameAsRequested"}] * len(self.providers)
|
|
)
|
|
log.debug(
|
|
(
|
|
f"Setting '{self.model_name}' execution providers to {self.providers}"
|
|
"in descending order of preference"
|
|
),
|
|
)
|
|
log.debug(f"Setting execution provider options to {self.provider_options}")
|
|
self.sess_options = PicklableSessionOptions()
|
|
# avoid thread contention between models
|
|
if inter_op_num_threads > 1:
|
|
self.sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL
|
|
|
|
log.debug(f"Setting execution_mode to {self.sess_options.execution_mode.name}")
|
|
log.debug(f"Setting inter_op_num_threads to {inter_op_num_threads}")
|
|
log.debug(f"Setting intra_op_num_threads to {intra_op_num_threads}")
|
|
self.sess_options.inter_op_num_threads = inter_op_num_threads
|
|
self.sess_options.intra_op_num_threads = intra_op_num_threads
|
|
self.sess_options.enable_cpu_mem_arena = False
|
|
|
|
try:
|
|
loader(**model_kwargs)
|
|
except (OSError, InvalidProtobuf, BadZipFile):
|
|
log.warn(
|
|
(
|
|
f"Failed to load {self.model_type.replace('_', ' ')} model '{self.model_name}'."
|
|
"Clearing cache and retrying."
|
|
)
|
|
)
|
|
self.clear_cache()
|
|
loader(**model_kwargs)
|
|
|
|
def download(self, **model_kwargs: Any) -> None:
|
|
if not self.cached:
|
|
log.info(
|
|
(f"Downloading {self.model_type.replace('_', ' ')} model '{self.model_name}'." "This may take a while.")
|
|
)
|
|
self._download(**model_kwargs)
|
|
|
|
def load(self, **model_kwargs: Any) -> None:
|
|
self.download(**model_kwargs)
|
|
self._load(**model_kwargs)
|
|
self._loaded = True
|
|
|
|
def predict(self, inputs: Any, **model_kwargs: Any) -> Any:
|
|
if not self._loaded:
|
|
log.info(f"Loading {self.model_type.replace('_', ' ')} model '{self.model_name}'")
|
|
self.load()
|
|
if model_kwargs:
|
|
self.configure(**model_kwargs)
|
|
return self._predict(inputs)
|
|
|
|
@abstractmethod
|
|
def _predict(self, inputs: Any) -> Any:
|
|
...
|
|
|
|
def configure(self, **model_kwargs: Any) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def _download(self, **model_kwargs: Any) -> None:
|
|
...
|
|
|
|
@abstractmethod
|
|
def _load(self, **model_kwargs: Any) -> None:
|
|
...
|
|
|
|
@property
|
|
def model_type(self) -> ModelType:
|
|
return self._model_type
|
|
|
|
@property
|
|
def cache_dir(self) -> Path:
|
|
return self._cache_dir
|
|
|
|
@cache_dir.setter
|
|
def cache_dir(self, cache_dir: Path) -> None:
|
|
self._cache_dir = cache_dir
|
|
|
|
@property
|
|
def cached(self) -> bool:
|
|
return self.cache_dir.exists() and any(self.cache_dir.iterdir())
|
|
|
|
@classmethod
|
|
def from_model_type(cls, model_type: ModelType, model_name: str, **model_kwargs: Any) -> InferenceModel:
|
|
subclasses = {subclass._model_type: subclass for subclass in cls.__subclasses__()}
|
|
if model_type not in subclasses:
|
|
raise ValueError(f"Unsupported model type: {model_type}")
|
|
|
|
return subclasses[model_type](model_name, **model_kwargs)
|
|
|
|
def clear_cache(self) -> None:
|
|
if not self.cache_dir.exists():
|
|
log.warn(
|
|
f"Attempted to clear cache for model '{self.model_name}' but cache directory does not exist.",
|
|
)
|
|
return
|
|
if not rmtree.avoids_symlink_attacks:
|
|
raise RuntimeError("Attempted to clear cache, but rmtree is not safe on this platform.")
|
|
|
|
if self.cache_dir.is_dir():
|
|
log.info(f"Cleared cache directory for model '{self.model_name}'.")
|
|
rmtree(self.cache_dir)
|
|
else:
|
|
log.warn(
|
|
(
|
|
f"Encountered file instead of directory at cache path "
|
|
f"for '{self.model_name}'. Removing file and replacing with a directory."
|
|
),
|
|
)
|
|
self.cache_dir.unlink()
|
|
self.cache_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
# HF deep copies configs, so we need to make session options picklable
|
|
class PicklableSessionOptions(ort.SessionOptions):
|
|
def __getstate__(self) -> bytes:
|
|
return pickle.dumps([(attr, getattr(self, attr)) for attr in dir(self) if not callable(getattr(self, attr))])
|
|
|
|
def __setstate__(self, state: Any) -> None:
|
|
self.__init__() # type: ignore
|
|
for attr, val in pickle.loads(state):
|
|
setattr(self, attr, val)
|