1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-04 02:46:47 +01:00
immich/machine-learning/export/models/optimize.py
Mert 41580696c7
feat(ml): add more search models (#11468)
* update export code

* add uuid glob, sort model names

* add new models to ml, sort names

* add new models to server, sort by dims and name

* typo in name

* update export dependencies

* onnx save function

* format
2024-07-31 04:34:45 +00:00

49 lines
1.6 KiB
Python

from pathlib import Path
import onnx
import onnxruntime as ort
import onnxsim
def save_onnx(model: onnx.ModelProto, output_path: Path | str) -> None:
try:
onnx.save(model, output_path)
except ValueError as e:
if "The proto size is larger than the 2 GB limit." in str(e):
onnx.save(model, output_path, save_as_external_data=True, size_threshold=1_000_000)
else:
raise e
def optimize_onnxsim(model_path: Path | str, output_path: Path | str) -> None:
model_path = Path(model_path)
output_path = Path(output_path)
model = onnx.load(model_path.as_posix())
model, check = onnxsim.simplify(model)
assert check, "Simplified ONNX model could not be validated"
for file in model_path.parent.iterdir():
if file.name.startswith("Constant") or "onnx" in file.name or file.suffix == ".weight":
file.unlink()
save_onnx(model, output_path)
def optimize_ort(
model_path: Path | str,
output_path: Path | str,
level: ort.GraphOptimizationLevel = ort.GraphOptimizationLevel.ORT_ENABLE_BASIC,
) -> None:
model_path = Path(model_path)
output_path = Path(output_path)
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = level
sess_options.optimized_model_filepath = output_path.as_posix()
ort.InferenceSession(model_path.as_posix(), providers=["CPUExecutionProvider"], sess_options=sess_options)
def optimize(model_path: Path | str) -> None:
model_path = Path(model_path)
optimize_ort(model_path, model_path)
optimize_onnxsim(model_path, model_path)