1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-07 20:36:48 +01:00
immich/machine-learning/locustfile.py
Mert b7fd5dcb4a
dev(ml): fixed docker-compose.dev.yml, updated locust (#3951)
* fixed dev docker compose

* updated locustfile

* deleted old script, moved comments to locustfile
2023-09-01 21:59:17 -04:00

92 lines
3.3 KiB
Python

from io import BytesIO
import json
from typing import Any
from locust import HttpUser, events, task
from locust.env import Environment
from PIL import Image
from argparse import ArgumentParser
byte_image = BytesIO()
@events.init_command_line_parser.add_listener
def _(parser: ArgumentParser) -> None:
parser.add_argument("--tag-model", type=str, default="microsoft/resnet-50")
parser.add_argument("--clip-model", type=str, default="ViT-B-32::openai")
parser.add_argument("--face-model", type=str, default="buffalo_l")
parser.add_argument("--tag-min-score", type=int, default=0.0,
help="Returns all tags at or above this score. The default returns all tags.")
parser.add_argument("--face-min-score", type=int, default=0.034,
help=("Returns all faces at or above this score. The default returns 1 face per request; "
"setting this to 0 blows up the number of faces to the thousands."))
parser.add_argument("--image-size", type=int, default=1000)
@events.test_start.add_listener
def on_test_start(environment: Environment, **kwargs: Any) -> None:
global byte_image
assert environment.parsed_options is not None
image = Image.new("RGB", (environment.parsed_options.image_size, environment.parsed_options.image_size))
byte_image = BytesIO()
image.save(byte_image, format="jpeg")
class InferenceLoadTest(HttpUser):
abstract: bool = True
host = "http://127.0.0.1:3003"
data: bytes
headers: dict[str, str] = {"Content-Type": "image/jpg"}
# re-use the image across all instances in a process
def on_start(self) -> None:
global byte_image
self.data = byte_image.getvalue()
class ClassificationFormDataLoadTest(InferenceLoadTest):
@task
def classify(self) -> None:
data = [
("modelName", self.environment.parsed_options.clip_model),
("modelType", "clip"),
("options", json.dumps({"minScore": self.environment.parsed_options.tag_min_score})),
]
files = {"image": self.data}
self.client.post("/predict", data=data, files=files)
class CLIPTextFormDataLoadTest(InferenceLoadTest):
@task
def encode_text(self) -> None:
data = [
("modelName", self.environment.parsed_options.clip_model),
("modelType", "clip"),
("options", json.dumps({"mode": "text"})),
("text", "test search query")
]
self.client.post("/predict", data=data)
class CLIPVisionFormDataLoadTest(InferenceLoadTest):
@task
def encode_image(self) -> None:
data = [
("modelName", self.environment.parsed_options.clip_model),
("modelType", "clip"),
("options", json.dumps({"mode": "vision"})),
]
files = {"image": self.data}
self.client.post("/predict", data=data, files=files)
class RecognitionFormDataLoadTest(InferenceLoadTest):
@task
def recognize(self) -> None:
data = [
("modelName", self.environment.parsed_options.face_model),
("modelType", "facial-recognition"),
("options", json.dumps({"minScore": self.environment.parsed_options.face_min_score})),
]
files = {"image": self.data}
self.client.post("/predict", data=data, files=files)