1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-19 18:26:46 +01:00
immich/machine_learning/app/image_classifier/image_classifier.py
Alex 6e0ac79eae
Add support for Apple Pro Raw format (.DNG) (#60)
* Added '.dng' (AppleProRaw) to support file's type
* Added OpenCV python framework for uniform image resizer
* Added version number information
2022-03-18 20:23:05 -05:00

37 lines
1.1 KiB
Python

from tensorflow.keras.applications import InceptionV3
from tensorflow.keras.applications.inception_v3 import preprocess_input, decode_predictions
from tensorflow.keras.preprocessing import image
import numpy as np
from PIL import Image
import cv2
IMG_SIZE = 299
PREDICTION_MODEL = InceptionV3(weights='imagenet')
def classify_image(image_path: str):
img_path = f'./app/{image_path}'
# img = image.load_img(img_path, target_size=(IMG_SIZE, IMG_SIZE))
target_image = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
resized_target_image = cv2.resize(target_image, (IMG_SIZE, IMG_SIZE))
x = image.img_to_array(resized_target_image)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = PREDICTION_MODEL.predict(x)
result = decode_predictions(preds, top=3)[0]
payload = []
for _, value, _ in result:
payload.append(value)
return payload
def warm_up():
img_path = f'./app/test.png'
img = image.load_img(img_path, target_size=(IMG_SIZE, IMG_SIZE))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
PREDICTION_MODEL.predict(x)