mirror of
https://github.com/immich-app/immich.git
synced 2025-01-10 05:46:46 +01:00
87a0ba3db3
* export clip models * export to hf refactored export code * export mclip, general refactoring cleanup * updated conda deps * do transforms with pillow and numpy, add tokenization config to export, general refactoring * moved conda dockerfile, re-added poetry * minor fixes * updated link * updated tests * removed `requirements.txt` from workflow * fixed mimalloc path * removed torchvision * cleaner np typing * review suggestions * update default model name * update test
38 lines
1.3 KiB
Python
38 lines
1.3 KiB
Python
from pathlib import Path
|
|
|
|
import onnx
|
|
import onnxruntime as ort
|
|
import onnxsim
|
|
|
|
|
|
def optimize_onnxsim(model_path: Path | str, output_path: Path | str) -> None:
|
|
model_path = Path(model_path)
|
|
output_path = Path(output_path)
|
|
model = onnx.load(model_path.as_posix())
|
|
model, check = onnxsim.simplify(model, skip_shape_inference=True)
|
|
assert check, "Simplified ONNX model could not be validated"
|
|
onnx.save(model, output_path.as_posix())
|
|
|
|
|
|
def optimize_ort(
|
|
model_path: Path | str,
|
|
output_path: Path | str,
|
|
level: ort.GraphOptimizationLevel = ort.GraphOptimizationLevel.ORT_ENABLE_BASIC,
|
|
) -> None:
|
|
model_path = Path(model_path)
|
|
output_path = Path(output_path)
|
|
|
|
sess_options = ort.SessionOptions()
|
|
sess_options.graph_optimization_level = level
|
|
sess_options.optimized_model_filepath = output_path.as_posix()
|
|
|
|
ort.InferenceSession(model_path.as_posix(), providers=["CPUExecutionProvider"], sess_options=sess_options)
|
|
|
|
|
|
def optimize(model_path: Path | str) -> None:
|
|
model_path = Path(model_path)
|
|
|
|
optimize_ort(model_path, model_path)
|
|
# onnxsim serializes large models as a blob, which uses much more memory when loading the model at runtime
|
|
if not any(file.name.startswith("Constant") for file in model_path.parent.iterdir()):
|
|
optimize_onnxsim(model_path, model_path)
|