1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-25 05:02:46 +01:00
immich/machine-learning/app/models/facial_recognition/detection.py
Mert f43721ec92
fix(ml): armnn not being used (#10929)
* fix armnn not being used, move fallback handling to main, add tests

* formatting
2024-07-10 09:20:43 -05:00

41 lines
1.5 KiB
Python

from typing import Any
import numpy as np
from insightface.model_zoo import RetinaFace
from numpy.typing import NDArray
from app.models.base import InferenceModel
from app.models.transforms import decode_cv2
from app.schemas import FaceDetectionOutput, ModelSession, ModelTask, ModelType
class FaceDetector(InferenceModel):
depends = []
identity = (ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)
def __init__(self, model_name: str, min_score: float = 0.7, **model_kwargs: Any) -> None:
self.min_score = model_kwargs.pop("minScore", min_score)
super().__init__(model_name, **model_kwargs)
def _load(self) -> ModelSession:
session = self._make_session(self.model_path)
self.model = RetinaFace(session=session)
self.model.prepare(ctx_id=0, det_thresh=self.min_score, input_size=(640, 640))
return session
def _predict(self, inputs: NDArray[np.uint8] | bytes, **kwargs: Any) -> FaceDetectionOutput:
inputs = decode_cv2(inputs)
bboxes, landmarks = self._detect(inputs)
return {
"boxes": bboxes[:, :4].round(),
"scores": bboxes[:, 4],
"landmarks": landmarks,
}
def _detect(self, inputs: NDArray[np.uint8] | bytes) -> tuple[NDArray[np.float32], NDArray[np.float32]]:
return self.model.detect(inputs) # type: ignore
def configure(self, **kwargs: Any) -> None:
self.model.det_thresh = kwargs.pop("minScore", self.model.det_thresh)