1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-09 21:36:46 +01:00
immich/machine-learning/app/models/cache.py
Mert 2b1b43a7e4
feat(ml): composable ml (#9973)
* modularize model classes

* various fixes

* expose port

* change response

* round coordinates

* simplify preload

* update server

* simplify interface

simplify

* update tests

* composable endpoint

* cleanup

fixes

remove unnecessary interface

support text input, cleanup

* ew camelcase

* update server

server fixes

fix typing

* ml fixes

update locustfile

fixes

* cleaner response

* better repo response

* update tests

formatting and typing

rename

* undo compose change

* linting

fix type

actually fix typing

* stricter typing

fix detection-only response

no need for defaultdict

* update spec file

update api

linting

* update e2e

* unnecessary dimension

* remove commented code

* remove duplicate code

* remove unused imports

* add batch dim
2024-06-07 03:09:47 +00:00

60 lines
2.1 KiB
Python

from typing import Any
from aiocache.backends.memory import SimpleMemoryCache
from aiocache.lock import OptimisticLock
from aiocache.plugins import TimingPlugin
from app.models import from_model_type
from app.models.base import InferenceModel
from ..schemas import ModelTask, ModelType, has_profiling
class ModelCache:
"""Fetches a model from an in-memory cache, instantiating it if it's missing."""
def __init__(
self,
revalidate: bool = False,
timeout: int | None = None,
profiling: bool = False,
) -> None:
"""
Args:
revalidate: Resets TTL on cache hit. Useful to keep models in memory while active. Defaults to False.
timeout: Maximum allowed time for model to load. Disabled if None. Defaults to None.
profiling: Collects metrics for cache operations, adding slight overhead. Defaults to False.
"""
plugins = []
if profiling:
plugins.append(TimingPlugin())
self.should_revalidate = revalidate
self.cache = SimpleMemoryCache(timeout=timeout, plugins=plugins, namespace=None)
async def get(
self, model_name: str, model_type: ModelType, model_task: ModelTask, **model_kwargs: Any
) -> InferenceModel:
key = f"{model_name}{model_type}{model_task}"
async with OptimisticLock(self.cache, key) as lock:
model: InferenceModel | None = await self.cache.get(key)
if model is None:
model = from_model_type(model_name, model_type, model_task, **model_kwargs)
await lock.cas(model, ttl=model_kwargs.get("ttl", None))
elif self.should_revalidate:
await self.revalidate(key, model_kwargs.get("ttl", None))
return model
async def get_profiling(self) -> dict[str, float] | None:
if not has_profiling(self.cache):
return None
return self.cache.profiling
async def revalidate(self, key: str, ttl: int | None) -> None:
if ttl is not None and key in self.cache._handlers:
await self.cache.expire(key, ttl)