1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-07 12:26:47 +01:00
immich/machine-learning/app/main.py
Mert d0cc231782
feat(ml): model unloading (#2661)
* model cache

* fixed revalidation when using cache namespace

* fixed ttl not being set, added lock
2023-06-06 20:48:51 -05:00

128 lines
3.9 KiB
Python

import os
from typing import Any
from cache import ModelCache
from schemas import (
EmbeddingResponse,
FaceResponse,
TagResponse,
MessageResponse,
TextModelRequest,
TextResponse,
VisionModelRequest,
)
import uvicorn
from PIL import Image
from fastapi import FastAPI, HTTPException
from models import get_model, run_classification, run_facial_recognition
classification_model = os.getenv(
"MACHINE_LEARNING_CLASSIFICATION_MODEL", "microsoft/resnet-50"
)
clip_image_model = os.getenv("MACHINE_LEARNING_CLIP_IMAGE_MODEL", "clip-ViT-B-32")
clip_text_model = os.getenv("MACHINE_LEARNING_CLIP_TEXT_MODEL", "clip-ViT-B-32")
facial_recognition_model = os.getenv(
"MACHINE_LEARNING_FACIAL_RECOGNITION_MODEL", "buffalo_l"
)
min_tag_score = float(os.getenv("MACHINE_LEARNING_MIN_TAG_SCORE", 0.9))
eager_startup = (
os.getenv("MACHINE_LEARNING_EAGER_STARTUP", "true") == "true"
) # loads all models at startup
model_ttl = int(os.getenv("MACHINE_LEARNING_MODEL_TTL", 300))
_model_cache = None
app = FastAPI()
@app.on_event("startup")
async def startup_event() -> None:
global _model_cache
_model_cache = ModelCache(ttl=model_ttl, revalidate=True)
models = [
(classification_model, "image-classification"),
(clip_image_model, "clip"),
(clip_text_model, "clip"),
(facial_recognition_model, "facial-recognition"),
]
# Get all models
for model_name, model_type in models:
if eager_startup:
await _model_cache.get_cached_model(model_name, model_type)
else:
get_model(model_name, model_type)
@app.get("/", response_model=MessageResponse)
async def root() -> dict[str, str]:
return {"message": "Immich ML"}
@app.get("/ping", response_model=TextResponse)
def ping() -> str:
return "pong"
@app.post("/image-classifier/tag-image", response_model=TagResponse, status_code=200)
async def image_classification(payload: VisionModelRequest) -> list[str]:
if _model_cache is None:
raise HTTPException(status_code=500, detail="Unable to load model.")
model = await _model_cache.get_cached_model(
classification_model, "image-classification"
)
labels = run_classification(model, payload.image_path, min_tag_score)
return labels
@app.post(
"/sentence-transformer/encode-image",
response_model=EmbeddingResponse,
status_code=200,
)
async def clip_encode_image(payload: VisionModelRequest) -> list[float]:
if _model_cache is None:
raise HTTPException(status_code=500, detail="Unable to load model.")
model = await _model_cache.get_cached_model(clip_image_model, "clip")
image = Image.open(payload.image_path)
embedding = model.encode(image).tolist()
return embedding
@app.post(
"/sentence-transformer/encode-text",
response_model=EmbeddingResponse,
status_code=200,
)
async def clip_encode_text(payload: TextModelRequest) -> list[float]:
if _model_cache is None:
raise HTTPException(status_code=500, detail="Unable to load model.")
model = await _model_cache.get_cached_model(clip_text_model, "clip")
embedding = model.encode(payload.text).tolist()
return embedding
@app.post(
"/facial-recognition/detect-faces", response_model=FaceResponse, status_code=200
)
async def facial_recognition(payload: VisionModelRequest) -> list[dict[str, Any]]:
if _model_cache is None:
raise HTTPException(status_code=500, detail="Unable to load model.")
model = await _model_cache.get_cached_model(
facial_recognition_model, "facial-recognition"
)
faces = run_facial_recognition(model, payload.image_path)
return faces
if __name__ == "__main__":
host = os.getenv("MACHINE_LEARNING_HOST", "0.0.0.0")
port = int(os.getenv("MACHINE_LEARNING_PORT", 3003))
is_dev = os.getenv("NODE_ENV") == "development"
uvicorn.run("main:app", host=host, port=port, reload=is_dev, workers=1)