mirror of
https://github.com/immich-app/immich.git
synced 2025-01-04 02:46:47 +01:00
169 lines
6.6 KiB
Python
169 lines
6.6 KiB
Python
from __future__ import annotations
|
|
|
|
from ctypes import CDLL, Array, c_bool, c_char_p, c_int, c_ulong, c_void_p
|
|
from os.path import exists
|
|
from typing import Any, Protocol, TypeVar
|
|
|
|
import numpy as np
|
|
from numpy.typing import NDArray
|
|
|
|
from app.config import log
|
|
|
|
try:
|
|
CDLL("libmali.so") # fail if libmali.so is not mounted into container
|
|
libann = CDLL("libann.so")
|
|
libann.init.argtypes = c_int, c_int, c_char_p
|
|
libann.init.restype = c_void_p
|
|
libann.load.argtypes = c_void_p, c_char_p, c_bool, c_bool, c_bool, c_char_p
|
|
libann.load.restype = c_int
|
|
libann.execute.argtypes = c_void_p, c_int, Array[c_void_p], Array[c_void_p]
|
|
libann.unload.argtypes = c_void_p, c_int
|
|
libann.destroy.argtypes = (c_void_p,)
|
|
libann.shape.argtypes = c_void_p, c_int, c_bool, c_int
|
|
libann.shape.restype = c_ulong
|
|
libann.tensors.argtypes = c_void_p, c_int, c_bool
|
|
libann.tensors.restype = c_int
|
|
is_available = True
|
|
except OSError as e:
|
|
log.debug("Could not load ANN shared libraries, using ONNX: %s", e)
|
|
is_available = False
|
|
|
|
T = TypeVar("T", covariant=True)
|
|
|
|
|
|
class Newable(Protocol[T]):
|
|
def new(self) -> None: ...
|
|
|
|
|
|
class _Singleton(type, Newable[T]):
|
|
_instances: dict[_Singleton[T], Newable[T]] = {}
|
|
|
|
def __call__(cls, *args: Any, **kwargs: Any) -> Newable[T]:
|
|
if cls not in cls._instances:
|
|
obj: Newable[T] = super(_Singleton, cls).__call__(*args, **kwargs)
|
|
cls._instances[cls] = obj
|
|
else:
|
|
obj = cls._instances[cls]
|
|
obj.new()
|
|
return obj
|
|
|
|
|
|
class Ann(metaclass=_Singleton):
|
|
def __init__(self, log_level: int = 3, tuning_level: int = 1, tuning_file: str | None = None) -> None:
|
|
if not is_available:
|
|
raise RuntimeError("libann is not available!")
|
|
if tuning_level == 0 and tuning_file is None:
|
|
raise ValueError("tuning_level == 0 reads existing tuning information and requires a tuning_file")
|
|
if tuning_level < 0 or tuning_level > 3:
|
|
raise ValueError("tuning_level must be 0 (load from tuning_file), 1, 2 or 3.")
|
|
if log_level < 0 or log_level > 5:
|
|
raise ValueError("log_level must be 0 (trace), 1 (debug), 2 (info), 3 (warning), 4 (error) or 5 (fatal)")
|
|
self.log_level = log_level
|
|
self.tuning_level = tuning_level
|
|
self.tuning_file = tuning_file
|
|
self.output_shapes: dict[int, tuple[tuple[int], ...]] = {}
|
|
self.input_shapes: dict[int, tuple[tuple[int], ...]] = {}
|
|
self.ann: int | None = None
|
|
self.new()
|
|
|
|
if self.tuning_file is not None:
|
|
# make sure tuning file exists (without clearing contents)
|
|
# once filled, the tuning file reduces the cost/time of the first
|
|
# inference after model load by 10s of seconds
|
|
open(self.tuning_file, "a").close()
|
|
|
|
def new(self) -> None:
|
|
if self.ann is None:
|
|
self.ann = libann.init(
|
|
self.log_level,
|
|
self.tuning_level,
|
|
self.tuning_file.encode() if self.tuning_file is not None else None,
|
|
)
|
|
self.ref_count = 0
|
|
|
|
self.ref_count += 1
|
|
|
|
def destroy(self) -> None:
|
|
self.ref_count -= 1
|
|
if self.ref_count <= 0 and self.ann is not None:
|
|
libann.destroy(self.ann)
|
|
self.ann = None
|
|
|
|
def __del__(self) -> None:
|
|
if self.ann is not None:
|
|
libann.destroy(self.ann)
|
|
self.ann = None
|
|
|
|
def load(
|
|
self,
|
|
model_path: str,
|
|
fast_math: bool = True,
|
|
fp16: bool = False,
|
|
cached_network_path: str | None = None,
|
|
) -> int:
|
|
if not model_path.endswith((".armnn", ".tflite", ".onnx")):
|
|
raise ValueError("model_path must be a file with extension .armnn, .tflite or .onnx")
|
|
if not exists(model_path):
|
|
raise ValueError("model_path must point to an existing file!")
|
|
|
|
save_cached_network = False
|
|
if cached_network_path is not None and not exists(cached_network_path):
|
|
save_cached_network = True
|
|
# create empty model cache file
|
|
open(cached_network_path, "a").close()
|
|
|
|
net_id: int = libann.load(
|
|
self.ann,
|
|
model_path.encode(),
|
|
fast_math,
|
|
fp16,
|
|
save_cached_network,
|
|
cached_network_path.encode() if cached_network_path is not None else None,
|
|
)
|
|
if net_id < 0:
|
|
raise ValueError("Cannot load model!")
|
|
|
|
self.input_shapes[net_id] = tuple(
|
|
self.shape(net_id, input=True, index=i) for i in range(self.tensors(net_id, input=True))
|
|
)
|
|
self.output_shapes[net_id] = tuple(
|
|
self.shape(net_id, input=False, index=i) for i in range(self.tensors(net_id, input=False))
|
|
)
|
|
return net_id
|
|
|
|
def unload(self, network_id: int) -> None:
|
|
libann.unload(self.ann, network_id)
|
|
del self.output_shapes[network_id]
|
|
|
|
def execute(self, network_id: int, input_tensors: list[NDArray[np.float32]]) -> list[NDArray[np.float32]]:
|
|
if not isinstance(input_tensors, list):
|
|
raise ValueError("input_tensors needs to be a list!")
|
|
net_input_shapes = self.input_shapes[network_id]
|
|
if len(input_tensors) != len(net_input_shapes):
|
|
raise ValueError(f"input_tensors lengths {len(input_tensors)} != network inputs {len(net_input_shapes)}")
|
|
for net_input_shape, input_tensor in zip(net_input_shapes, input_tensors):
|
|
if net_input_shape != input_tensor.shape:
|
|
raise ValueError(f"input_tensor shape {input_tensor.shape} != network input shape {net_input_shape}")
|
|
if not input_tensor.flags.c_contiguous:
|
|
raise ValueError("input_tensors must be c_contiguous numpy ndarrays")
|
|
output_tensors: list[NDArray[np.float32]] = [
|
|
np.ndarray(s, dtype=np.float32) for s in self.output_shapes[network_id]
|
|
]
|
|
input_type = c_void_p * len(input_tensors)
|
|
inputs = input_type(*[t.ctypes.data_as(c_void_p) for t in input_tensors])
|
|
output_type = c_void_p * len(output_tensors)
|
|
outputs = output_type(*[t.ctypes.data_as(c_void_p) for t in output_tensors])
|
|
libann.execute(self.ann, network_id, inputs, outputs)
|
|
return output_tensors
|
|
|
|
def shape(self, network_id: int, input: bool = False, index: int = 0) -> tuple[int]:
|
|
s = libann.shape(self.ann, network_id, input, index)
|
|
a = []
|
|
while s != 0:
|
|
a.append(s & 0xFFFF)
|
|
s >>= 16
|
|
return tuple(a)
|
|
|
|
def tensors(self, network_id: int, input: bool = False) -> int:
|
|
tensors: int = libann.tensors(self.ann, network_id, input)
|
|
return tensors
|