1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-21 03:02:44 +01:00
immich/machine-learning/app/config.py
Mert 95cfe22866
feat(ml)!: cuda and openvino acceleration (#5619)
* cuda and openvino ep, refactor, update dockerfile

* updated workflow

* typing fixes

* added tests

* updated ml test gh action

* updated README

* updated docker-compose

* added compute to hwaccel.yml

* updated gh matrix

updated gh matrix

updated gh matrix

updated gh matrix

updated gh matrix

give up

* remove cuda/arm64 build

* add hwaccel image tags to docker-compose

* remove unnecessary quotes

* add suffix to git tag

* fixed kwargs in base model

* armnn ld_library_path

* update pyproject.toml

* add armnn workflow

* formatting

* consolidate hwaccel files, update docker compose

* update hw transcoding docs

* add ml hwaccel docs

* update dev and prod docker-compose

* added armnn prerequisite docs

* support 3.10

* updated docker-compose comments

* formatting

* test coverage

* don't set arena extend strategy for openvino

* working openvino

* formatting

* fix dockerfile

* added type annotation

* add wsl configuration for openvino

* updated lock file

* copy python3

* comment out extends section

* fix platforms

* simplify workflow suffix tagging

* simplify aio transcoding doc

* update docs and workflow for `hwaccel.yml` change

* revert docs
2024-01-21 18:22:39 -05:00

99 lines
2.6 KiB
Python

import logging
import os
import sys
from pathlib import Path
from socket import socket
import starlette
from gunicorn.arbiter import Arbiter
from pydantic import BaseSettings
from rich.console import Console
from rich.logging import RichHandler
from uvicorn import Server
from uvicorn.workers import UvicornWorker
from .schemas import ModelType
class Settings(BaseSettings):
cache_folder: str = "/cache"
model_ttl: int = 300
model_ttl_poll_s: int = 10
host: str = "0.0.0.0"
port: int = 3003
workers: int = 1
test_full: bool = False
request_threads: int = os.cpu_count() or 4
model_inter_op_threads: int = 0
model_intra_op_threads: int = 0
ann: bool = True
class Config:
env_prefix = "MACHINE_LEARNING_"
case_sensitive = False
class LogSettings(BaseSettings):
log_level: str = "info"
no_color: bool = False
class Config:
case_sensitive = False
_clean_name = str.maketrans(":\\/", "___", ".")
def clean_name(model_name: str) -> str:
return model_name.split("/")[-1].translate(_clean_name)
def get_cache_dir(model_name: str, model_type: ModelType) -> Path:
return Path(settings.cache_folder) / model_type.value / clean_name(model_name)
def get_hf_model_name(model_name: str) -> str:
return f"immich-app/{clean_name(model_name)}"
LOG_LEVELS: dict[str, int] = {
"critical": logging.ERROR,
"error": logging.ERROR,
"warning": logging.WARNING,
"warn": logging.WARNING,
"info": logging.INFO,
"log": logging.INFO,
"debug": logging.DEBUG,
"verbose": logging.DEBUG,
}
settings = Settings()
log_settings = LogSettings()
class CustomRichHandler(RichHandler):
def __init__(self) -> None:
console = Console(color_system="standard", no_color=log_settings.no_color)
super().__init__(show_path=False, omit_repeated_times=False, console=console, tracebacks_suppress=[starlette])
log = logging.getLogger("gunicorn.access")
log.setLevel(LOG_LEVELS.get(log_settings.log_level.lower(), logging.INFO))
# patches this issue https://github.com/encode/uvicorn/discussions/1803
class CustomUvicornServer(Server):
async def shutdown(self, sockets: list[socket] | None = None) -> None:
for sock in sockets or []:
sock.close()
await super().shutdown()
class CustomUvicornWorker(UvicornWorker):
async def _serve(self) -> None:
self.config.app = self.wsgi
server = CustomUvicornServer(config=self.config)
self._install_sigquit_handler()
await server.serve(sockets=self.sockets)
if not server.started:
sys.exit(Arbiter.WORKER_BOOT_ERROR)