mirror of
https://github.com/immich-app/immich.git
synced 2025-01-16 16:56:46 +01:00
76 lines
2.3 KiB
Python
76 lines
2.3 KiB
Python
import asyncio
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from typing import Any
|
|
|
|
import orjson
|
|
from fastapi import FastAPI, Form, HTTPException, UploadFile
|
|
from fastapi.responses import ORJSONResponse
|
|
from starlette.formparsers import MultiPartParser
|
|
|
|
from app.models.base import InferenceModel
|
|
|
|
from .config import log, settings
|
|
from .models.cache import ModelCache
|
|
from .schemas import (
|
|
MessageResponse,
|
|
ModelType,
|
|
TextResponse,
|
|
)
|
|
|
|
MultiPartParser.max_file_size = 2**24 # spools to disk if payload is 16 MiB or larger
|
|
app = FastAPI()
|
|
|
|
|
|
def init_state() -> None:
|
|
app.state.model_cache = ModelCache(ttl=settings.model_ttl, revalidate=settings.model_ttl > 0)
|
|
log.info(
|
|
(
|
|
"Created in-memory cache with unloading "
|
|
f"{f'after {settings.model_ttl}s of inactivity' if settings.model_ttl > 0 else 'disabled'}."
|
|
)
|
|
)
|
|
# asyncio is a huge bottleneck for performance, so we use a thread pool to run blocking code
|
|
app.state.thread_pool = ThreadPoolExecutor(settings.request_threads) if settings.request_threads > 0 else None
|
|
log.info(f"Initialized request thread pool with {settings.request_threads} threads.")
|
|
|
|
|
|
@app.on_event("startup")
|
|
async def startup_event() -> None:
|
|
init_state()
|
|
|
|
|
|
@app.get("/", response_model=MessageResponse)
|
|
async def root() -> dict[str, str]:
|
|
return {"message": "Immich ML"}
|
|
|
|
|
|
@app.get("/ping", response_model=TextResponse)
|
|
def ping() -> str:
|
|
return "pong"
|
|
|
|
|
|
@app.post("/predict")
|
|
async def predict(
|
|
model_name: str = Form(alias="modelName"),
|
|
model_type: ModelType = Form(alias="modelType"),
|
|
options: str = Form(default="{}"),
|
|
text: str | None = Form(default=None),
|
|
image: UploadFile | None = None,
|
|
) -> Any:
|
|
if image is not None:
|
|
inputs: str | bytes = await image.read()
|
|
elif text is not None:
|
|
inputs = text
|
|
else:
|
|
raise HTTPException(400, "Either image or text must be provided")
|
|
|
|
model: InferenceModel = await app.state.model_cache.get(model_name, model_type, **orjson.loads(options))
|
|
outputs = await run(model, inputs)
|
|
return ORJSONResponse(outputs)
|
|
|
|
|
|
async def run(model: InferenceModel, inputs: Any) -> Any:
|
|
if app.state.thread_pool is not None:
|
|
return await asyncio.get_running_loop().run_in_executor(app.state.thread_pool, model.predict, inputs)
|
|
else:
|
|
return model.predict(inputs)
|