1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-16 16:56:46 +01:00
immich/machine-learning/app/test_main.py
Mert 0c4df216d7
feat(ml): improve test coverage (#7041)
* update e2e

* tokenizer tests

* more tests, remove unnecessary code

* fix e2e setting

* add tests for loading model

* update workflow

* fixed test
2024-02-11 17:58:56 -05:00

623 lines
26 KiB
Python

import json
from io import BytesIO
from pathlib import Path
from random import randint
from types import SimpleNamespace
from typing import Any, Callable
from unittest import mock
import cv2
import numpy as np
import onnxruntime as ort
import pytest
from fastapi.testclient import TestClient
from PIL import Image
from pytest_mock import MockerFixture
from app.main import load
from .config import log, settings
from .models.base import InferenceModel
from .models.cache import ModelCache
from .models.clip import MCLIPEncoder, OpenCLIPEncoder
from .models.facial_recognition import FaceRecognizer
from .schemas import ModelRuntime, ModelType
class TestBase:
CPU_EP = ["CPUExecutionProvider"]
CUDA_EP = ["CUDAExecutionProvider", "CPUExecutionProvider"]
OV_EP = ["OpenVINOExecutionProvider", "CPUExecutionProvider"]
CUDA_EP_OUT_OF_ORDER = ["CPUExecutionProvider", "CUDAExecutionProvider"]
TRT_EP = ["TensorrtExecutionProvider", "CUDAExecutionProvider", "CPUExecutionProvider"]
@pytest.mark.providers(CPU_EP)
def test_sets_cpu_provider(self, providers: list[str]) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
assert encoder.providers == self.CPU_EP
@pytest.mark.providers(CUDA_EP)
def test_sets_cuda_provider_if_available(self, providers: list[str]) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
assert encoder.providers == self.CUDA_EP
@pytest.mark.providers(OV_EP)
def test_sets_openvino_provider_if_available(self, providers: list[str]) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
assert encoder.providers == self.OV_EP
@pytest.mark.providers(CUDA_EP_OUT_OF_ORDER)
def test_sets_providers_in_correct_order(self, providers: list[str]) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
assert encoder.providers == self.CUDA_EP
@pytest.mark.providers(TRT_EP)
def test_ignores_unsupported_providers(self, providers: list[str]) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
assert encoder.providers == self.CUDA_EP
def test_sets_provider_kwarg(self) -> None:
providers = ["CUDAExecutionProvider"]
encoder = OpenCLIPEncoder("ViT-B-32__openai", providers=providers)
assert encoder.providers == providers
def test_sets_default_provider_options(self) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai", providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"])
assert encoder.provider_options == [
{},
{"arena_extend_strategy": "kSameAsRequested"},
]
def test_sets_openvino_device_id_if_possible(self, mocker: MockerFixture) -> None:
mocked = mocker.patch("app.models.base.ort.capi._pybind_state")
mocked.get_available_openvino_device_ids.return_value = ["GPU.0", "CPU"]
encoder = OpenCLIPEncoder("ViT-B-32__openai", providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"])
assert encoder.provider_options == [
{"device_id": "GPU.0"},
{"arena_extend_strategy": "kSameAsRequested"},
]
def test_sets_provider_options_kwarg(self) -> None:
encoder = OpenCLIPEncoder(
"ViT-B-32__openai",
providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"],
provider_options=[],
)
assert encoder.provider_options == []
def test_sets_default_sess_options(self) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
assert encoder.sess_options.execution_mode == ort.ExecutionMode.ORT_SEQUENTIAL
assert encoder.sess_options.inter_op_num_threads == 1
assert encoder.sess_options.intra_op_num_threads == 2
assert encoder.sess_options.enable_cpu_mem_arena is False
def test_sets_default_sess_options_does_not_set_threads_if_non_cpu_and_default_threads(self) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai", providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
assert encoder.sess_options.inter_op_num_threads == 0
assert encoder.sess_options.intra_op_num_threads == 0
def test_sets_default_sess_options_sets_threads_if_non_cpu_and_set_threads(self, mocker: MockerFixture) -> None:
mock_settings = mocker.patch("app.models.base.settings", autospec=True)
mock_settings.model_inter_op_threads = 2
mock_settings.model_intra_op_threads = 4
encoder = OpenCLIPEncoder("ViT-B-32__openai", providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
assert encoder.sess_options.inter_op_num_threads == 2
assert encoder.sess_options.intra_op_num_threads == 4
def test_sets_sess_options_kwarg(self) -> None:
sess_options = ort.SessionOptions()
encoder = OpenCLIPEncoder(
"ViT-B-32__openai",
providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"],
provider_options=[],
sess_options=sess_options,
)
assert sess_options is encoder.sess_options
def test_sets_default_cache_dir(self) -> None:
encoder = OpenCLIPEncoder("ViT-B-32__openai")
assert encoder.cache_dir == Path(settings.cache_folder) / "clip" / "ViT-B-32__openai"
def test_sets_cache_dir_kwarg(self) -> None:
cache_dir = Path("/test_cache")
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=cache_dir)
assert encoder.cache_dir == cache_dir
def test_sets_default_preferred_runtime(self, mocker: MockerFixture) -> None:
mocker.patch.object(settings, "ann", True)
mocker.patch("ann.ann.is_available", False)
encoder = OpenCLIPEncoder("ViT-B-32__openai")
assert encoder.preferred_runtime == ModelRuntime.ONNX
def test_sets_default_preferred_runtime_to_armnn_if_available(self, mocker: MockerFixture) -> None:
mocker.patch.object(settings, "ann", True)
mocker.patch("ann.ann.is_available", True)
encoder = OpenCLIPEncoder("ViT-B-32__openai")
assert encoder.preferred_runtime == ModelRuntime.ARMNN
def test_sets_preferred_runtime_kwarg(self, mocker: MockerFixture) -> None:
mocker.patch.object(settings, "ann", False)
mocker.patch("ann.ann.is_available", False)
encoder = OpenCLIPEncoder("ViT-B-32__openai", preferred_runtime=ModelRuntime.ARMNN)
assert encoder.preferred_runtime == ModelRuntime.ARMNN
def test_casts_cache_dir_string_to_path(self) -> None:
cache_dir = "/test_cache"
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=cache_dir)
assert encoder.cache_dir == Path(cache_dir)
def test_clear_cache(self, mocker: MockerFixture) -> None:
mock_rmtree = mocker.patch("app.models.base.rmtree", autospec=True)
mock_rmtree.avoids_symlink_attacks = True
mock_cache_dir = mocker.Mock()
mock_cache_dir.exists.return_value = True
mock_cache_dir.is_dir.return_value = True
mocker.patch("app.models.base.Path", return_value=mock_cache_dir)
info = mocker.spy(log, "info")
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
encoder.clear_cache()
mock_rmtree.assert_called_once_with(encoder.cache_dir)
info.assert_called_with(f"Cleared cache directory for model '{encoder.model_name}'.")
def test_clear_cache_warns_if_path_does_not_exist(self, mocker: MockerFixture) -> None:
mock_rmtree = mocker.patch("app.models.base.rmtree", autospec=True)
mock_rmtree.avoids_symlink_attacks = True
mock_cache_dir = mocker.Mock()
mock_cache_dir.exists.return_value = False
mock_cache_dir.is_dir.return_value = True
mocker.patch("app.models.base.Path", return_value=mock_cache_dir)
warning = mocker.spy(log, "warning")
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
encoder.clear_cache()
mock_rmtree.assert_not_called()
warning.assert_called_once()
def test_clear_cache_raises_exception_if_vulnerable_to_symlink_attack(self, mocker: MockerFixture) -> None:
mock_rmtree = mocker.patch("app.models.base.rmtree", autospec=True)
mock_rmtree.avoids_symlink_attacks = False
mock_cache_dir = mocker.Mock()
mock_cache_dir.exists.return_value = True
mock_cache_dir.is_dir.return_value = True
mocker.patch("app.models.base.Path", return_value=mock_cache_dir)
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
with pytest.raises(RuntimeError):
encoder.clear_cache()
mock_rmtree.assert_not_called()
def test_clear_cache_replaces_file_with_dir_if_path_is_file(self, mocker: MockerFixture) -> None:
mock_rmtree = mocker.patch("app.models.base.rmtree", autospec=True)
mock_rmtree.avoids_symlink_attacks = True
mock_cache_dir = mocker.Mock()
mock_cache_dir.exists.return_value = True
mock_cache_dir.is_dir.return_value = False
mocker.patch("app.models.base.Path", return_value=mock_cache_dir)
warning = mocker.spy(log, "warning")
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
encoder.clear_cache()
mock_rmtree.assert_not_called()
mock_cache_dir.unlink.assert_called_once()
mock_cache_dir.mkdir.assert_called_once()
warning.assert_called_once()
def test_make_session_return_ann_if_available(self, mocker: MockerFixture) -> None:
mock_model_path = mocker.Mock()
mock_model_path.is_file.return_value = True
mock_model_path.suffix = ".armnn"
mock_model_path.with_suffix.return_value = mock_model_path
mock_session = mocker.patch("app.models.base.AnnSession")
encoder = OpenCLIPEncoder("ViT-B-32__openai")
encoder._make_session(mock_model_path)
mock_session.assert_called_once()
def test_make_session_return_ort_if_available_and_ann_is_not(self, mocker: MockerFixture) -> None:
mock_armnn_path = mocker.Mock()
mock_armnn_path.is_file.return_value = False
mock_armnn_path.suffix = ".armnn"
mock_onnx_path = mocker.Mock()
mock_onnx_path.is_file.return_value = True
mock_onnx_path.suffix = ".onnx"
mock_armnn_path.with_suffix.return_value = mock_onnx_path
mock_ann = mocker.patch("app.models.base.AnnSession")
mock_ort = mocker.patch("app.models.base.ort.InferenceSession")
encoder = OpenCLIPEncoder("ViT-B-32__openai")
encoder._make_session(mock_armnn_path)
mock_ort.assert_called_once()
mock_ann.assert_not_called()
def test_make_session_raises_exception_if_path_does_not_exist(self, mocker: MockerFixture) -> None:
mock_model_path = mocker.Mock()
mock_model_path.is_file.return_value = False
mock_model_path.suffix = ".onnx"
mock_model_path.with_suffix.return_value = mock_model_path
mock_ann = mocker.patch("app.models.base.AnnSession")
mock_ort = mocker.patch("app.models.base.ort.InferenceSession")
encoder = OpenCLIPEncoder("ViT-B-32__openai")
with pytest.raises(ValueError):
encoder._make_session(mock_model_path)
mock_ann.assert_not_called()
mock_ort.assert_not_called()
def test_download(self, mocker: MockerFixture) -> None:
mock_snapshot_download = mocker.patch("app.models.base.snapshot_download")
encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir="/path/to/cache")
encoder.download()
mock_snapshot_download.assert_called_once_with(
"immich-app/ViT-B-32__openai",
cache_dir=encoder.cache_dir,
local_dir=encoder.cache_dir,
local_dir_use_symlinks=False,
ignore_patterns=["*.armnn"],
)
def test_download_downloads_armnn_if_preferred_runtime(self, mocker: MockerFixture) -> None:
mock_snapshot_download = mocker.patch("app.models.base.snapshot_download")
encoder = OpenCLIPEncoder("ViT-B-32__openai", preferred_runtime=ModelRuntime.ARMNN)
encoder.download()
mock_snapshot_download.assert_called_once_with(
"immich-app/ViT-B-32__openai",
cache_dir=encoder.cache_dir,
local_dir=encoder.cache_dir,
local_dir_use_symlinks=False,
ignore_patterns=[],
)
class TestCLIP:
embedding = np.random.rand(512).astype(np.float32)
cache_dir = Path("test_cache")
def test_basic_image(
self,
pil_image: Image.Image,
mocker: MockerFixture,
clip_model_cfg: dict[str, Any],
clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
) -> None:
mocker.patch.object(OpenCLIPEncoder, "download")
mocker.patch.object(OpenCLIPEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(OpenCLIPEncoder, "preprocess_cfg", clip_preprocess_cfg)
mocker.patch.object(OpenCLIPEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
mocked = mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
mocked.run.return_value = [[self.embedding]]
mocker.patch("app.models.clip.Tokenizer.from_file", autospec=True)
clip_encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir="test_cache", mode="vision")
embedding = clip_encoder.predict(pil_image)
assert clip_encoder.mode == "vision"
assert isinstance(embedding, np.ndarray)
assert embedding.shape[0] == clip_model_cfg["embed_dim"]
assert embedding.dtype == np.float32
mocked.run.assert_called_once()
def test_basic_text(
self,
mocker: MockerFixture,
clip_model_cfg: dict[str, Any],
clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
) -> None:
mocker.patch.object(OpenCLIPEncoder, "download")
mocker.patch.object(OpenCLIPEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(OpenCLIPEncoder, "preprocess_cfg", clip_preprocess_cfg)
mocker.patch.object(OpenCLIPEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
mocked = mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
mocked.run.return_value = [[self.embedding]]
mocker.patch("app.models.clip.Tokenizer.from_file", autospec=True)
clip_encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir="test_cache", mode="text")
embedding = clip_encoder.predict("test search query")
assert clip_encoder.mode == "text"
assert isinstance(embedding, np.ndarray)
assert embedding.shape[0] == clip_model_cfg["embed_dim"]
assert embedding.dtype == np.float32
mocked.run.assert_called_once()
def test_openclip_tokenizer(
self,
mocker: MockerFixture,
clip_model_cfg: dict[str, Any],
clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
) -> None:
mocker.patch.object(OpenCLIPEncoder, "download")
mocker.patch.object(OpenCLIPEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(OpenCLIPEncoder, "preprocess_cfg", clip_preprocess_cfg)
mocker.patch.object(OpenCLIPEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
mock_tokenizer = mocker.patch("app.models.clip.Tokenizer.from_file", autospec=True).return_value
mock_ids = [randint(0, 50000) for _ in range(77)]
mock_tokenizer.encode.return_value = SimpleNamespace(ids=mock_ids)
clip_encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir="test_cache", mode="text")
clip_encoder._load_tokenizer()
tokens = clip_encoder.tokenize("test search query")
assert "text" in tokens
assert isinstance(tokens["text"], np.ndarray)
assert tokens["text"].shape == (1, 77)
assert tokens["text"].dtype == np.int32
assert np.allclose(tokens["text"], np.array([mock_ids], dtype=np.int32), atol=0)
def test_mclip_tokenizer(
self,
mocker: MockerFixture,
clip_model_cfg: dict[str, Any],
clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
) -> None:
mocker.patch.object(OpenCLIPEncoder, "download")
mocker.patch.object(OpenCLIPEncoder, "model_cfg", clip_model_cfg)
mocker.patch.object(OpenCLIPEncoder, "preprocess_cfg", clip_preprocess_cfg)
mocker.patch.object(OpenCLIPEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
mock_tokenizer = mocker.patch("app.models.clip.Tokenizer.from_file", autospec=True).return_value
mock_ids = [randint(0, 50000) for _ in range(77)]
mock_attention_mask = [randint(0, 1) for _ in range(77)]
mock_tokenizer.encode.return_value = SimpleNamespace(ids=mock_ids, attention_mask=mock_attention_mask)
clip_encoder = MCLIPEncoder("ViT-B-32__openai", cache_dir="test_cache", mode="text")
clip_encoder._load_tokenizer()
tokens = clip_encoder.tokenize("test search query")
assert "input_ids" in tokens
assert "attention_mask" in tokens
assert isinstance(tokens["input_ids"], np.ndarray)
assert isinstance(tokens["attention_mask"], np.ndarray)
assert tokens["input_ids"].shape == (1, 77)
assert tokens["attention_mask"].shape == (1, 77)
assert np.allclose(tokens["input_ids"], np.array([mock_ids], dtype=np.int32), atol=0)
assert np.allclose(tokens["attention_mask"], np.array([mock_attention_mask], dtype=np.int32), atol=0)
class TestFaceRecognition:
def test_set_min_score(self, mocker: MockerFixture) -> None:
mocker.patch.object(FaceRecognizer, "load")
face_recognizer = FaceRecognizer("buffalo_s", cache_dir="test_cache", min_score=0.5)
assert face_recognizer.min_score == 0.5
def test_basic(self, cv_image: cv2.Mat, mocker: MockerFixture) -> None:
mocker.patch.object(FaceRecognizer, "load")
face_recognizer = FaceRecognizer("buffalo_s", min_score=0.0, cache_dir="test_cache")
det_model = mock.Mock()
num_faces = 2
bbox = np.random.rand(num_faces, 4).astype(np.float32)
score = np.array([[0.67]] * num_faces).astype(np.float32)
kpss = np.random.rand(num_faces, 5, 2).astype(np.float32)
det_model.detect.return_value = (np.concatenate([bbox, score], axis=-1), kpss)
face_recognizer.det_model = det_model
rec_model = mock.Mock()
embedding = np.random.rand(num_faces, 512).astype(np.float32)
rec_model.get_feat.return_value = embedding
face_recognizer.rec_model = rec_model
faces = face_recognizer.predict(cv_image)
assert len(faces) == num_faces
for face in faces:
assert face["imageHeight"] == 800
assert face["imageWidth"] == 600
assert isinstance(face["embedding"], np.ndarray)
assert face["embedding"].shape[0] == 512
assert face["embedding"].dtype == np.float32
det_model.detect.assert_called_once()
assert rec_model.get_feat.call_count == num_faces
@pytest.mark.asyncio
class TestCache:
async def test_caches(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
assert len(model_cache.cache._cache) == 1
mock_get_model.assert_called_once()
async def test_kwargs_used(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION, cache_dir="test_cache")
mock_get_model.assert_called_once_with(ModelType.FACIAL_RECOGNITION, "test_model_name", cache_dir="test_cache")
async def test_different_clip(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache()
await model_cache.get("test_image_model_name", ModelType.CLIP)
await model_cache.get("test_text_model_name", ModelType.CLIP)
mock_get_model.assert_has_calls(
[
mock.call(ModelType.CLIP, "test_image_model_name"),
mock.call(ModelType.CLIP, "test_text_model_name"),
]
)
assert len(model_cache.cache._cache) == 2
@mock.patch("app.models.cache.OptimisticLock", autospec=True)
async def test_model_ttl(self, mock_lock_cls: mock.Mock, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache(ttl=100)
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
mock_lock_cls.return_value.__aenter__.return_value.cas.assert_called_with(mock.ANY, ttl=100)
@mock.patch("app.models.cache.SimpleMemoryCache.expire")
async def test_revalidate_get(self, mock_cache_expire: mock.Mock, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache(ttl=100, revalidate=True)
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
mock_cache_expire.assert_called_once_with(mock.ANY, 100)
async def test_profiling(self, mock_get_model: mock.Mock) -> None:
model_cache = ModelCache(ttl=100, profiling=True)
await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
profiling = await model_cache.get_profiling()
assert isinstance(profiling, dict)
assert profiling == model_cache.cache.profiling
async def test_loads_mclip(self) -> None:
model_cache = ModelCache()
model = await model_cache.get("XLM-Roberta-Large-Vit-B-32", ModelType.CLIP, mode="text")
assert isinstance(model, MCLIPEncoder)
assert model.model_name == "XLM-Roberta-Large-Vit-B-32"
async def test_raises_exception_if_invalid_model_type(self) -> None:
invalid: Any = SimpleNamespace(value="invalid")
model_cache = ModelCache()
with pytest.raises(ValueError):
await model_cache.get("XLM-Roberta-Large-Vit-B-32", invalid, mode="text")
async def test_raises_exception_if_unknown_model_name(self) -> None:
model_cache = ModelCache()
with pytest.raises(ValueError):
await model_cache.get("test_model_name", ModelType.CLIP, mode="text")
@pytest.mark.asyncio
class TestLoad:
async def test_load(self) -> None:
mock_model = mock.Mock(spec=InferenceModel)
mock_model.loaded = False
res = await load(mock_model)
assert res is mock_model
mock_model.load.assert_called_once()
mock_model.clear_cache.assert_not_called()
async def test_load_returns_model_if_loaded(self) -> None:
mock_model = mock.Mock(spec=InferenceModel)
mock_model.loaded = True
res = await load(mock_model)
assert res is mock_model
mock_model.load.assert_not_called()
async def test_load_clears_cache_and_retries_if_os_error(self) -> None:
mock_model = mock.Mock(spec=InferenceModel)
mock_model.model_name = "test_model_name"
mock_model.model_type = ModelType.CLIP
mock_model.load.side_effect = [OSError, None]
mock_model.loaded = False
res = await load(mock_model)
assert res is mock_model
mock_model.clear_cache.assert_called_once()
assert mock_model.load.call_count == 2
@pytest.mark.skipif(
not settings.test_full,
reason="More time-consuming since it deploys the app and loads models.",
)
class TestEndpoints:
def test_clip_image_endpoint(
self, pil_image: Image.Image, responses: dict[str, Any], deployed_app: TestClient
) -> None:
byte_image = BytesIO()
pil_image.save(byte_image, format="jpeg")
expected = responses["clip"]["image"]
response = deployed_app.post(
"http://localhost:3003/predict",
data={"modelName": "ViT-B-32__openai", "modelType": "clip", "options": json.dumps({"mode": "vision"})},
files={"image": byte_image.getvalue()},
)
actual = response.json()
assert response.status_code == 200
assert np.allclose(expected, actual)
def test_clip_text_endpoint(self, responses: dict[str, Any], deployed_app: TestClient) -> None:
expected = responses["clip"]["text"]
response = deployed_app.post(
"http://localhost:3003/predict",
data={
"modelName": "ViT-B-32__openai",
"modelType": "clip",
"text": "test search query",
"options": json.dumps({"mode": "text"}),
},
)
actual = response.json()
assert response.status_code == 200
assert np.allclose(expected, actual)
def test_face_endpoint(self, pil_image: Image.Image, responses: dict[str, Any], deployed_app: TestClient) -> None:
byte_image = BytesIO()
pil_image.save(byte_image, format="jpeg")
expected = responses["facial-recognition"]
response = deployed_app.post(
"http://localhost:3003/predict",
data={
"modelName": "buffalo_l",
"modelType": "facial-recognition",
"options": json.dumps({"minScore": 0.034}),
},
files={"image": byte_image.getvalue()},
)
actual = response.json()
assert response.status_code == 200
assert len(expected) == len(actual)
for expected_face, actual_face in zip(expected, actual):
assert expected_face["imageHeight"] == actual_face["imageHeight"]
assert expected_face["imageWidth"] == actual_face["imageWidth"]
assert expected_face["boundingBox"] == actual_face["boundingBox"]
assert np.allclose(expected_face["embedding"], actual_face["embedding"])
assert np.allclose(expected_face["score"], actual_face["score"])