mirror of
https://github.com/immich-app/immich.git
synced 2025-01-22 11:42:46 +01:00
129 lines
5.1 KiB
Python
129 lines
5.1 KiB
Python
from __future__ import annotations
|
|
|
|
from pathlib import Path
|
|
from typing import Any
|
|
|
|
import numpy as np
|
|
import onnxruntime as ort
|
|
from numpy.typing import NDArray
|
|
|
|
from app.models.constants import SUPPORTED_PROVIDERS
|
|
from app.schemas import SessionNode
|
|
|
|
from ..config import log, settings
|
|
|
|
|
|
class OrtSession:
|
|
def __init__(
|
|
self,
|
|
model_path: Path | str,
|
|
providers: list[str] | None = None,
|
|
provider_options: list[dict[str, Any]] | None = None,
|
|
sess_options: ort.SessionOptions | None = None,
|
|
):
|
|
self.model_path = Path(model_path)
|
|
self.providers = providers if providers is not None else self._providers_default
|
|
self.provider_options = provider_options if provider_options is not None else self._provider_options_default
|
|
self.sess_options = sess_options if sess_options is not None else self._sess_options_default
|
|
self.session = ort.InferenceSession(
|
|
self.model_path.as_posix(),
|
|
providers=self.providers,
|
|
provider_options=self.provider_options,
|
|
sess_options=self.sess_options,
|
|
)
|
|
|
|
def get_inputs(self) -> list[SessionNode]:
|
|
inputs: list[SessionNode] = self.session.get_inputs()
|
|
return inputs
|
|
|
|
def get_outputs(self) -> list[SessionNode]:
|
|
outputs: list[SessionNode] = self.session.get_outputs()
|
|
return outputs
|
|
|
|
def run(
|
|
self,
|
|
output_names: list[str] | None,
|
|
input_feed: dict[str, NDArray[np.float32]] | dict[str, NDArray[np.int32]],
|
|
run_options: Any = None,
|
|
) -> list[NDArray[np.float32]]:
|
|
outputs: list[NDArray[np.float32]] = self.session.run(output_names, input_feed, run_options)
|
|
return outputs
|
|
|
|
@property
|
|
def providers(self) -> list[str]:
|
|
return self._providers
|
|
|
|
@providers.setter
|
|
def providers(self, providers: list[str]) -> None:
|
|
log.info(f"Setting execution providers to {providers}, in descending order of preference")
|
|
self._providers = providers
|
|
|
|
@property
|
|
def _providers_default(self) -> list[str]:
|
|
available_providers = set(ort.get_available_providers())
|
|
log.debug(f"Available ORT providers: {available_providers}")
|
|
if (openvino := "OpenVINOExecutionProvider") in available_providers:
|
|
device_ids: list[str] = ort.capi._pybind_state.get_available_openvino_device_ids()
|
|
log.debug(f"Available OpenVINO devices: {device_ids}")
|
|
|
|
gpu_devices = [device_id for device_id in device_ids if device_id.startswith("GPU")]
|
|
if not gpu_devices:
|
|
log.warning("No GPU device found in OpenVINO. Falling back to CPU.")
|
|
available_providers.remove(openvino)
|
|
return [provider for provider in SUPPORTED_PROVIDERS if provider in available_providers]
|
|
|
|
@property
|
|
def provider_options(self) -> list[dict[str, Any]]:
|
|
return self._provider_options
|
|
|
|
@provider_options.setter
|
|
def provider_options(self, provider_options: list[dict[str, Any]]) -> None:
|
|
log.debug(f"Setting execution provider options to {provider_options}")
|
|
self._provider_options = provider_options
|
|
|
|
@property
|
|
def _provider_options_default(self) -> list[dict[str, Any]]:
|
|
options = []
|
|
for provider in self.providers:
|
|
match provider:
|
|
case "CPUExecutionProvider" | "CUDAExecutionProvider":
|
|
option = {"arena_extend_strategy": "kSameAsRequested"}
|
|
case "OpenVINOExecutionProvider":
|
|
option = {"device_type": "GPU_FP32", "cache_dir": (self.model_path.parent / "openvino").as_posix()}
|
|
case _:
|
|
option = {}
|
|
options.append(option)
|
|
return options
|
|
|
|
@property
|
|
def sess_options(self) -> ort.SessionOptions:
|
|
return self._sess_options
|
|
|
|
@sess_options.setter
|
|
def sess_options(self, sess_options: ort.SessionOptions) -> None:
|
|
log.debug(f"Setting execution_mode to {sess_options.execution_mode.name}")
|
|
log.debug(f"Setting inter_op_num_threads to {sess_options.inter_op_num_threads}")
|
|
log.debug(f"Setting intra_op_num_threads to {sess_options.intra_op_num_threads}")
|
|
self._sess_options = sess_options
|
|
|
|
@property
|
|
def _sess_options_default(self) -> ort.SessionOptions:
|
|
sess_options = ort.SessionOptions()
|
|
sess_options.enable_cpu_mem_arena = False
|
|
|
|
# avoid thread contention between models
|
|
if settings.model_inter_op_threads > 0:
|
|
sess_options.inter_op_num_threads = settings.model_inter_op_threads
|
|
# these defaults work well for CPU, but bottleneck GPU
|
|
elif settings.model_inter_op_threads == 0 and self.providers == ["CPUExecutionProvider"]:
|
|
sess_options.inter_op_num_threads = 1
|
|
|
|
if settings.model_intra_op_threads > 0:
|
|
sess_options.intra_op_num_threads = settings.model_intra_op_threads
|
|
elif settings.model_intra_op_threads == 0 and self.providers == ["CPUExecutionProvider"]:
|
|
sess_options.intra_op_num_threads = 2
|
|
|
|
if sess_options.inter_op_num_threads > 1:
|
|
sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL
|
|
|
|
return sess_options
|