1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-17 01:06:46 +01:00
immich/machine-learning/app/models/base.py
Mert 258b98c262
fix(ml): load models in separate threads (#4034)
* load models in thread

* set clip mode logs to debug level

* updated tests

* made fixtures slightly less ugly

* moved responses to json file

* formatting
2023-09-09 16:02:44 +07:00

144 lines
5 KiB
Python

from __future__ import annotations
import pickle
from abc import ABC, abstractmethod
from pathlib import Path
from shutil import rmtree
from typing import Any
import onnxruntime as ort
from ..config import get_cache_dir, log, settings
from ..schemas import ModelType
class InferenceModel(ABC):
_model_type: ModelType
def __init__(
self,
model_name: str,
cache_dir: Path | str | None = None,
inter_op_num_threads: int = settings.model_inter_op_threads,
intra_op_num_threads: int = settings.model_intra_op_threads,
**model_kwargs: Any,
) -> None:
self.model_name = model_name
self.loaded = False
self._cache_dir = Path(cache_dir) if cache_dir is not None else get_cache_dir(model_name, self.model_type)
self.providers = model_kwargs.pop("providers", ["CPUExecutionProvider"])
# don't pre-allocate more memory than needed
self.provider_options = model_kwargs.pop(
"provider_options", [{"arena_extend_strategy": "kSameAsRequested"}] * len(self.providers)
)
log.debug(
(
f"Setting '{self.model_name}' execution providers to {self.providers}"
"in descending order of preference"
),
)
log.debug(f"Setting execution provider options to {self.provider_options}")
self.sess_options = PicklableSessionOptions()
# avoid thread contention between models
if inter_op_num_threads > 1:
self.sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL
log.debug(f"Setting execution_mode to {self.sess_options.execution_mode.name}")
log.debug(f"Setting inter_op_num_threads to {inter_op_num_threads}")
log.debug(f"Setting intra_op_num_threads to {intra_op_num_threads}")
self.sess_options.inter_op_num_threads = inter_op_num_threads
self.sess_options.intra_op_num_threads = intra_op_num_threads
self.sess_options.enable_cpu_mem_arena = False
def download(self) -> None:
if not self.cached:
log.info(
(f"Downloading {self.model_type.replace('-', ' ')} model '{self.model_name}'." "This may take a while.")
)
self._download()
def load(self) -> None:
if self.loaded:
return
self.download()
log.info(f"Loading {self.model_type.replace('-', ' ')} model '{self.model_name}'")
self._load()
self.loaded = True
def predict(self, inputs: Any, **model_kwargs: Any) -> Any:
self.load()
if model_kwargs:
self.configure(**model_kwargs)
return self._predict(inputs)
@abstractmethod
def _predict(self, inputs: Any) -> Any:
...
def configure(self, **model_kwargs: Any) -> None:
pass
@abstractmethod
def _download(self) -> None:
...
@abstractmethod
def _load(self) -> None:
...
@property
def model_type(self) -> ModelType:
return self._model_type
@property
def cache_dir(self) -> Path:
return self._cache_dir
@cache_dir.setter
def cache_dir(self, cache_dir: Path) -> None:
self._cache_dir = cache_dir
@property
def cached(self) -> bool:
return self.cache_dir.exists() and any(self.cache_dir.iterdir())
@classmethod
def from_model_type(cls, model_type: ModelType, model_name: str, **model_kwargs: Any) -> InferenceModel:
subclasses = {subclass._model_type: subclass for subclass in cls.__subclasses__()}
if model_type not in subclasses:
raise ValueError(f"Unsupported model type: {model_type}")
return subclasses[model_type](model_name, **model_kwargs)
def clear_cache(self) -> None:
if not self.cache_dir.exists():
log.warn(
f"Attempted to clear cache for model '{self.model_name}' but cache directory does not exist.",
)
return
if not rmtree.avoids_symlink_attacks:
raise RuntimeError("Attempted to clear cache, but rmtree is not safe on this platform.")
if self.cache_dir.is_dir():
log.info(f"Cleared cache directory for model '{self.model_name}'.")
rmtree(self.cache_dir)
else:
log.warn(
(
f"Encountered file instead of directory at cache path "
f"for '{self.model_name}'. Removing file and replacing with a directory."
),
)
self.cache_dir.unlink()
self.cache_dir.mkdir(parents=True, exist_ok=True)
# HF deep copies configs, so we need to make session options picklable
class PicklableSessionOptions(ort.SessionOptions):
def __getstate__(self) -> bytes:
return pickle.dumps([(attr, getattr(self, attr)) for attr in dir(self) if not callable(getattr(self, attr))])
def __setstate__(self, state: Any) -> None:
self.__init__() # type: ignore
for attr, val in pickle.loads(state):
setattr(self, attr, val)