1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-17 01:06:46 +01:00
immich/machine-learning/app/sessions/ort.py
Mert bd826b0b9b
feat(ml): round-robin device assignment (#13237)
* round-robin device assignment

* docs and tests

clarify doc
2024-10-07 17:37:45 -04:00

135 lines
5.4 KiB
Python

from __future__ import annotations
from pathlib import Path
from typing import Any
import numpy as np
import onnxruntime as ort
from numpy.typing import NDArray
from app.models.constants import SUPPORTED_PROVIDERS
from app.schemas import SessionNode
from ..config import log, settings
class OrtSession:
def __init__(
self,
model_path: Path | str,
providers: list[str] | None = None,
provider_options: list[dict[str, Any]] | None = None,
sess_options: ort.SessionOptions | None = None,
):
self.model_path = Path(model_path)
self.providers = providers if providers is not None else self._providers_default
self.provider_options = provider_options if provider_options is not None else self._provider_options_default
self.sess_options = sess_options if sess_options is not None else self._sess_options_default
self.session = ort.InferenceSession(
self.model_path.as_posix(),
providers=self.providers,
provider_options=self.provider_options,
sess_options=self.sess_options,
)
def get_inputs(self) -> list[SessionNode]:
inputs: list[SessionNode] = self.session.get_inputs()
return inputs
def get_outputs(self) -> list[SessionNode]:
outputs: list[SessionNode] = self.session.get_outputs()
return outputs
def run(
self,
output_names: list[str] | None,
input_feed: dict[str, NDArray[np.float32]] | dict[str, NDArray[np.int32]],
run_options: Any = None,
) -> list[NDArray[np.float32]]:
outputs: list[NDArray[np.float32]] = self.session.run(output_names, input_feed, run_options)
return outputs
@property
def providers(self) -> list[str]:
return self._providers
@providers.setter
def providers(self, providers: list[str]) -> None:
log.info(f"Setting execution providers to {providers}, in descending order of preference")
self._providers = providers
@property
def _providers_default(self) -> list[str]:
available_providers = set(ort.get_available_providers())
log.debug(f"Available ORT providers: {available_providers}")
if (openvino := "OpenVINOExecutionProvider") in available_providers:
device_ids: list[str] = ort.capi._pybind_state.get_available_openvino_device_ids()
log.debug(f"Available OpenVINO devices: {device_ids}")
gpu_devices = [device_id for device_id in device_ids if device_id.startswith("GPU")]
if not gpu_devices:
log.warning("No GPU device found in OpenVINO. Falling back to CPU.")
available_providers.remove(openvino)
return [provider for provider in SUPPORTED_PROVIDERS if provider in available_providers]
@property
def provider_options(self) -> list[dict[str, Any]]:
return self._provider_options
@provider_options.setter
def provider_options(self, provider_options: list[dict[str, Any]]) -> None:
log.debug(f"Setting execution provider options to {provider_options}")
self._provider_options = provider_options
@property
def _provider_options_default(self) -> list[dict[str, Any]]:
provider_options = []
for provider in self.providers:
match provider:
case "CPUExecutionProvider":
options = {"arena_extend_strategy": "kSameAsRequested"}
case "CUDAExecutionProvider":
options = {"arena_extend_strategy": "kSameAsRequested", "device_id": settings.device_id}
case "OpenVINOExecutionProvider":
options = {
"device_type": f"GPU.{settings.device_id}",
"precision": "FP32",
"cache_dir": (self.model_path.parent / "openvino").as_posix(),
}
case _:
options = {}
provider_options.append(options)
return provider_options
@property
def sess_options(self) -> ort.SessionOptions:
return self._sess_options
@sess_options.setter
def sess_options(self, sess_options: ort.SessionOptions) -> None:
log.debug(f"Setting execution_mode to {sess_options.execution_mode.name}")
log.debug(f"Setting inter_op_num_threads to {sess_options.inter_op_num_threads}")
log.debug(f"Setting intra_op_num_threads to {sess_options.intra_op_num_threads}")
self._sess_options = sess_options
@property
def _sess_options_default(self) -> ort.SessionOptions:
sess_options = ort.SessionOptions()
sess_options.enable_cpu_mem_arena = False
# avoid thread contention between models
if settings.model_inter_op_threads > 0:
sess_options.inter_op_num_threads = settings.model_inter_op_threads
# these defaults work well for CPU, but bottleneck GPU
elif settings.model_inter_op_threads == 0 and self.providers == ["CPUExecutionProvider"]:
sess_options.inter_op_num_threads = 1
if settings.model_intra_op_threads > 0:
sess_options.intra_op_num_threads = settings.model_intra_op_threads
elif settings.model_intra_op_threads == 0 and self.providers == ["CPUExecutionProvider"]:
sess_options.intra_op_num_threads = 2
if sess_options.inter_op_num_threads > 1:
sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL
return sess_options