1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-01 16:41:59 +00:00
immich/machine-learning/app/models/transforms.py

71 lines
2.3 KiB
Python

import string
from io import BytesIO
from typing import IO
import cv2
import numpy as np
from numpy.typing import NDArray
from PIL import Image
_PIL_RESAMPLING_METHODS = {resampling.name.lower(): resampling for resampling in Image.Resampling}
_PUNCTUATION_TRANS = str.maketrans("", "", string.punctuation)
def resize_pil(img: Image.Image, size: int) -> Image.Image:
if img.width < img.height:
return img.resize((size, int((img.height / img.width) * size)), resample=Image.Resampling.BICUBIC)
else:
return img.resize((int((img.width / img.height) * size), size), resample=Image.Resampling.BICUBIC)
# https://stackoverflow.com/a/60883103
def crop_pil(img: Image.Image, size: int) -> Image.Image:
left = int((img.size[0] / 2) - (size / 2))
upper = int((img.size[1] / 2) - (size / 2))
right = left + size
lower = upper + size
return img.crop((left, upper, right, lower))
def to_numpy(img: Image.Image) -> NDArray[np.float32]:
return np.asarray(img if img.mode == "RGB" else img.convert("RGB"), dtype=np.float32) / 255.0
def normalize(
img: NDArray[np.float32], mean: float | NDArray[np.float32], std: float | NDArray[np.float32]
) -> NDArray[np.float32]:
return np.divide(img - mean, std, dtype=np.float32)
def get_pil_resampling(resample: str) -> Image.Resampling:
return _PIL_RESAMPLING_METHODS[resample.lower()]
def pil_to_cv2(image: Image.Image) -> NDArray[np.uint8]:
return cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) # type: ignore
def decode_pil(image_bytes: bytes | IO[bytes] | Image.Image) -> Image.Image:
if isinstance(image_bytes, Image.Image):
return image_bytes
image: Image.Image = Image.open(BytesIO(image_bytes) if isinstance(image_bytes, bytes) else image_bytes)
image.load()
if not image.mode == "RGB":
image = image.convert("RGB")
return image
def decode_cv2(image_bytes: NDArray[np.uint8] | bytes | Image.Image) -> NDArray[np.uint8]:
if isinstance(image_bytes, bytes):
image_bytes = decode_pil(image_bytes) # pillow is much faster than cv2
if isinstance(image_bytes, Image.Image):
return pil_to_cv2(image_bytes)
return image_bytes
def clean_text(text: str, canonicalize: bool = False) -> str:
text = " ".join(text.split())
if canonicalize:
text = text.translate(_PUNCTUATION_TRANS).lower()
return text