1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-22 11:42:46 +01:00
immich/machine-learning/app/main.py
Mert 68f52818ae
feat(server): separate face clustering job (#5598)
* separate facial clustering job

* update api

* fixed some tests

* invert clustering

* hdbscan

* update api

* remove commented code

* wip dbscan

* cleanup

removed cluster endpoint

remove commented code

* fixes

updated tests

minor fixes and formatting

fixed queuing

refinements

* scale search range based on library size

* defer non-core faces

* optimizations

removed unused query option

* assign faces individually for correctness

fixed unit tests

remove unused method

* don't select face embedding

update sql

linting

fixed ml typing

* updated job mock

* paginate people query

* select face embeddings because typeorm

* fix setting face detection concurrency

* update sql

formatting

linting

* simplify logic

remove unused imports

* more specific delete signature

* more accurate typing for face stubs

* add migration

formatting

* chore: better typing

* don't select embedding by default

remove unused import

* updated sql

* use normal try/catch

* stricter concurrency typing and enforcement

* update api

* update job concurrency panel to show disabled queues

formatting

* check jobId in queueAll

fix tests

* remove outdated comment

* better facial recognition icon

* wording

wording

formatting

* fixed tests

* fix

* formatting & sql

* try to fix sql check

* more detailed description

* update sql

* formatting

* wording

* update `minFaces` description

---------

Co-authored-by: Jason Rasmussen <jrasm91@gmail.com>
Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
2024-01-18 00:08:48 -05:00

160 lines
4.7 KiB
Python

import asyncio
import gc
import os
import signal
import threading
import time
from concurrent.futures import ThreadPoolExecutor
from contextlib import asynccontextmanager
from typing import Any, AsyncGenerator, Callable, Iterator
from zipfile import BadZipFile
import orjson
from fastapi import Depends, FastAPI, Form, HTTPException, UploadFile
from fastapi.responses import ORJSONResponse
from onnxruntime.capi.onnxruntime_pybind11_state import InvalidProtobuf, NoSuchFile
from starlette.formparsers import MultiPartParser
from app.models.base import InferenceModel
from .config import log, settings
from .models.cache import ModelCache
from .schemas import (
MessageResponse,
ModelType,
TextResponse,
)
MultiPartParser.max_file_size = 2**26 # spools to disk if payload is 64 MiB or larger
model_cache = ModelCache(ttl=settings.model_ttl, revalidate=settings.model_ttl > 0)
thread_pool: ThreadPoolExecutor | None = None
lock = threading.Lock()
active_requests = 0
last_called: float | None = None
@asynccontextmanager
async def lifespan(_: FastAPI) -> AsyncGenerator[None, None]:
global thread_pool
log.info(
(
"Created in-memory cache with unloading "
f"{f'after {settings.model_ttl}s of inactivity' if settings.model_ttl > 0 else 'disabled'}."
)
)
try:
if settings.request_threads > 0:
# asyncio is a huge bottleneck for performance, so we use a thread pool to run blocking code
thread_pool = ThreadPoolExecutor(settings.request_threads) if settings.request_threads > 0 else None
log.info(f"Initialized request thread pool with {settings.request_threads} threads.")
if settings.model_ttl > 0 and settings.model_ttl_poll_s > 0:
asyncio.ensure_future(idle_shutdown_task())
yield
finally:
log.handlers.clear()
for model in model_cache.cache._cache.values():
del model
if thread_pool is not None:
thread_pool.shutdown()
gc.collect()
def update_state() -> Iterator[None]:
global active_requests, last_called
active_requests += 1
last_called = time.time()
try:
yield
finally:
active_requests -= 1
app = FastAPI(lifespan=lifespan)
@app.get("/", response_model=MessageResponse)
async def root() -> dict[str, str]:
return {"message": "Immich ML"}
@app.get("/ping", response_model=TextResponse)
def ping() -> str:
return "pong"
@app.post("/predict", dependencies=[Depends(update_state)])
async def predict(
model_name: str = Form(alias="modelName"),
model_type: ModelType = Form(alias="modelType"),
options: str = Form(default="{}"),
text: str | None = Form(default=None),
image: UploadFile | None = None,
) -> Any:
if image is not None:
inputs: str | bytes = await image.read()
elif text is not None:
inputs = text
else:
raise HTTPException(400, "Either image or text must be provided")
try:
kwargs = orjson.loads(options)
except orjson.JSONDecodeError:
raise HTTPException(400, f"Invalid options JSON: {options}")
model = await load(await model_cache.get(model_name, model_type, **kwargs))
model.configure(**kwargs)
outputs = await run(model.predict, inputs)
return ORJSONResponse(outputs)
async def run(func: Callable[..., Any], inputs: Any) -> Any:
if thread_pool is None:
return func(inputs)
return await asyncio.get_running_loop().run_in_executor(thread_pool, func, inputs)
async def load(model: InferenceModel) -> InferenceModel:
if model.loaded:
return model
def _load() -> None:
with lock:
model.load()
loop = asyncio.get_running_loop()
try:
if thread_pool is None:
model.load()
else:
await loop.run_in_executor(thread_pool, _load)
return model
except (OSError, InvalidProtobuf, BadZipFile, NoSuchFile):
log.warn(
(
f"Failed to load {model.model_type.replace('_', ' ')} model '{model.model_name}'."
"Clearing cache and retrying."
)
)
model.clear_cache()
if thread_pool is None:
model.load()
else:
await loop.run_in_executor(thread_pool, _load)
return model
async def idle_shutdown_task() -> None:
while True:
log.debug("Checking for inactivity...")
if (
last_called is not None
and not active_requests
and not lock.locked()
and time.time() - last_called > settings.model_ttl
):
log.info("Shutting down due to inactivity.")
os.kill(os.getpid(), signal.SIGINT)
break
await asyncio.sleep(settings.model_ttl_poll_s)