1
0
Fork 0
mirror of https://github.com/immich-app/immich.git synced 2025-01-25 05:02:46 +01:00
immich/machine-learning/app/schemas.py
Mert e7397f35c9
chore(ml): update pydantic (#13230)
* update pydantic

* fix typing

* remove unused import

* remove unused schema
2024-10-13 18:00:21 -04:00

118 lines
2.4 KiB
Python

from enum import Enum
from typing import Any, Literal, Protocol, TypeGuard, TypeVar
import numpy as np
import numpy.typing as npt
from typing_extensions import TypedDict
class StrEnum(str, Enum):
value: str
def __str__(self) -> str:
return self.value
class BoundingBox(TypedDict):
x1: int
y1: int
x2: int
y2: int
class ModelTask(StrEnum):
FACIAL_RECOGNITION = "facial-recognition"
SEARCH = "clip"
class ModelType(StrEnum):
DETECTION = "detection"
RECOGNITION = "recognition"
TEXTUAL = "textual"
VISUAL = "visual"
class ModelFormat(StrEnum):
ARMNN = "armnn"
ONNX = "onnx"
class ModelSource(StrEnum):
INSIGHTFACE = "insightface"
MCLIP = "mclip"
OPENCLIP = "openclip"
ModelIdentity = tuple[ModelType, ModelTask]
class SessionNode(Protocol):
@property
def name(self) -> str | None: ...
@property
def shape(self) -> tuple[int, ...]: ...
class ModelSession(Protocol):
def run(
self,
output_names: list[str] | None,
input_feed: dict[str, npt.NDArray[np.float32]] | dict[str, npt.NDArray[np.int32]],
run_options: Any = None,
) -> list[npt.NDArray[np.float32]]: ...
def get_inputs(self) -> list[SessionNode]: ...
def get_outputs(self) -> list[SessionNode]: ...
class HasProfiling(Protocol):
profiling: dict[str, float]
class FaceDetectionOutput(TypedDict):
boxes: npt.NDArray[np.float32]
scores: npt.NDArray[np.float32]
landmarks: npt.NDArray[np.float32]
class DetectedFace(TypedDict):
boundingBox: BoundingBox
embedding: npt.NDArray[np.float32]
score: float
FacialRecognitionOutput = list[DetectedFace]
class PipelineEntry(TypedDict):
modelName: str
options: dict[str, Any]
PipelineRequest = dict[ModelTask, dict[ModelType, PipelineEntry]]
class InferenceEntry(TypedDict):
name: str
task: ModelTask
type: ModelType
options: dict[str, Any]
InferenceEntries = tuple[list[InferenceEntry], list[InferenceEntry]]
InferenceResponse = dict[ModelTask | Literal["imageHeight"] | Literal["imageWidth"], Any]
def has_profiling(obj: Any) -> TypeGuard[HasProfiling]:
return hasattr(obj, "profiling") and isinstance(obj.profiling, dict)
def is_ndarray(obj: Any, dtype: "type[np._DTypeScalar_co]") -> "TypeGuard[npt.NDArray[np._DTypeScalar_co]]":
return isinstance(obj, np.ndarray) and obj.dtype == dtype
T = TypeVar("T")