import asyncio import gc import os import signal import threading import time from concurrent.futures import ThreadPoolExecutor from contextlib import asynccontextmanager from typing import Any, AsyncGenerator, Callable, Iterator from zipfile import BadZipFile import orjson from fastapi import Depends, FastAPI, Form, HTTPException, UploadFile from fastapi.responses import ORJSONResponse from onnxruntime.capi.onnxruntime_pybind11_state import InvalidProtobuf, NoSuchFile from starlette.formparsers import MultiPartParser from app.models.base import InferenceModel from .config import log, settings from .models.cache import ModelCache from .schemas import ( MessageResponse, ModelType, TextResponse, ) MultiPartParser.max_file_size = 2**26 # spools to disk if payload is 64 MiB or larger model_cache = ModelCache(ttl=settings.model_ttl, revalidate=settings.model_ttl > 0) thread_pool: ThreadPoolExecutor | None = None lock = threading.Lock() active_requests = 0 last_called: float | None = None @asynccontextmanager async def lifespan(_: FastAPI) -> AsyncGenerator[None, None]: global thread_pool log.info( ( "Created in-memory cache with unloading " f"{f'after {settings.model_ttl}s of inactivity' if settings.model_ttl > 0 else 'disabled'}." ) ) try: if settings.request_threads > 0: # asyncio is a huge bottleneck for performance, so we use a thread pool to run blocking code thread_pool = ThreadPoolExecutor(settings.request_threads) if settings.request_threads > 0 else None log.info(f"Initialized request thread pool with {settings.request_threads} threads.") if settings.model_ttl > 0 and settings.model_ttl_poll_s > 0: asyncio.ensure_future(idle_shutdown_task()) yield finally: log.handlers.clear() for model in model_cache.cache._cache.values(): del model if thread_pool is not None: thread_pool.shutdown() gc.collect() def update_state() -> Iterator[None]: global active_requests, last_called active_requests += 1 last_called = time.time() try: yield finally: active_requests -= 1 app = FastAPI(lifespan=lifespan) @app.get("/", response_model=MessageResponse) async def root() -> dict[str, str]: return {"message": "Immich ML"} @app.get("/ping", response_model=TextResponse) def ping() -> str: return "pong" @app.post("/predict", dependencies=[Depends(update_state)]) async def predict( model_name: str = Form(alias="modelName"), model_type: ModelType = Form(alias="modelType"), options: str = Form(default="{}"), text: str | None = Form(default=None), image: UploadFile | None = None, ) -> Any: if image is not None: inputs: str | bytes = await image.read() elif text is not None: inputs = text else: raise HTTPException(400, "Either image or text must be provided") try: kwargs = orjson.loads(options) except orjson.JSONDecodeError: raise HTTPException(400, f"Invalid options JSON: {options}") model = await load(await model_cache.get(model_name, model_type, **kwargs)) model.configure(**kwargs) outputs = await run(model.predict, inputs) return ORJSONResponse(outputs) async def run(func: Callable[..., Any], inputs: Any) -> Any: if thread_pool is None: return func(inputs) return await asyncio.get_running_loop().run_in_executor(thread_pool, func, inputs) async def load(model: InferenceModel) -> InferenceModel: if model.loaded: return model def _load() -> None: with lock: model.load() loop = asyncio.get_running_loop() try: if thread_pool is None: model.load() else: await loop.run_in_executor(thread_pool, _load) return model except (OSError, InvalidProtobuf, BadZipFile, NoSuchFile): log.warn( ( f"Failed to load {model.model_type.replace('_', ' ')} model '{model.model_name}'." "Clearing cache and retrying." ) ) model.clear_cache() if thread_pool is None: model.load() else: await loop.run_in_executor(thread_pool, _load) return model async def idle_shutdown_task() -> None: while True: log.debug("Checking for inactivity...") if ( last_called is not None and not active_requests and not lock.locked() and time.time() - last_called > settings.model_ttl ): log.info("Shutting down due to inactivity.") os.kill(os.getpid(), signal.SIGINT) break await asyncio.sleep(settings.model_ttl_poll_s)