from enum import StrEnum from typing import Any, Protocol, TypedDict, TypeGuard import numpy as np import numpy.typing as npt from pydantic import BaseModel class TextResponse(BaseModel): __root__: str class MessageResponse(BaseModel): message: str class BoundingBox(TypedDict): x1: int y1: int x2: int y2: int class ModelType(StrEnum): CLIP = "clip" FACIAL_RECOGNITION = "facial-recognition" class HasProfiling(Protocol): profiling: dict[str, float] class Face(TypedDict): boundingBox: BoundingBox embedding: npt.NDArray[np.float32] imageWidth: int imageHeight: int score: float def has_profiling(obj: Any) -> TypeGuard[HasProfiling]: return hasattr(obj, "profiling") and isinstance(obj.profiling, dict) def is_ndarray(obj: Any, dtype: "type[np._DTypeScalar_co]") -> "TypeGuard[npt.NDArray[np._DTypeScalar_co]]": return isinstance(obj, np.ndarray) and obj.dtype == dtype