import json from typing import Any, Iterator from unittest import mock import numpy as np import pytest from fastapi.testclient import TestClient from numpy.typing import NDArray from PIL import Image from .main import app @pytest.fixture def pil_image() -> Image.Image: return Image.new("RGB", (600, 800)) @pytest.fixture def cv_image(pil_image: Image.Image) -> NDArray[np.float32]: return np.asarray(pil_image)[:, :, ::-1] # PIL uses RGB while cv2 uses BGR @pytest.fixture def mock_get_model() -> Iterator[mock.Mock]: with mock.patch("app.models.cache.from_model_type", autospec=True) as mocked: yield mocked @pytest.fixture(scope="session") def deployed_app() -> Iterator[TestClient]: with TestClient(app) as client: yield client @pytest.fixture(scope="session") def responses() -> dict[str, Any]: responses: dict[str, Any] = json.load(open("responses.json", "r")) return responses @pytest.fixture(scope="session") def clip_model_cfg() -> dict[str, Any]: return { "embed_dim": 512, "vision_cfg": {"image_size": 224, "layers": 12, "width": 768, "patch_size": 32}, "text_cfg": {"context_length": 77, "vocab_size": 49408, "width": 512, "heads": 8, "layers": 12}, } @pytest.fixture(scope="session") def clip_preprocess_cfg() -> dict[str, Any]: return { "size": [224, 224], "mode": "RGB", "mean": [0.48145466, 0.4578275, 0.40821073], "std": [0.26862954, 0.26130258, 0.27577711], "interpolation": "bicubic", "resize_mode": "shortest", "fill_color": 0, } @pytest.fixture(scope="session") def clip_tokenizer_cfg() -> dict[str, Any]: return { "add_prefix_space": False, "added_tokens_decoder": { "49406": { "content": "<|startoftext|>", "lstrip": False, "normalized": True, "rstrip": False, "single_word": False, "special": True, }, "49407": { "content": "<|endoftext|>", "lstrip": False, "normalized": True, "rstrip": False, "single_word": False, "special": True, }, }, "bos_token": "<|startoftext|>", "clean_up_tokenization_spaces": True, "do_lower_case": True, "eos_token": "<|endoftext|>", "errors": "replace", "model_max_length": 77, "pad_token": "<|endoftext|>", "tokenizer_class": "CLIPTokenizer", "unk_token": "<|endoftext|>", }