import logging import os from pathlib import Path import gunicorn import starlette from pydantic import BaseSettings from rich.console import Console from rich.logging import RichHandler from .schemas import ModelType class Settings(BaseSettings): cache_folder: str = "/cache" model_ttl: int = 300 model_ttl_poll_s: int = 10 host: str = "0.0.0.0" port: int = 3003 workers: int = 1 test_full: bool = False request_threads: int = os.cpu_count() or 4 model_inter_op_threads: int = 1 model_intra_op_threads: int = 2 class Config: env_prefix = "MACHINE_LEARNING_" case_sensitive = False class LogSettings(BaseSettings): log_level: str = "info" no_color: bool = False class Config: case_sensitive = False _clean_name = str.maketrans(":\\/", "___", ".") def clean_name(model_name: str) -> str: return model_name.split("/")[-1].translate(_clean_name) def get_cache_dir(model_name: str, model_type: ModelType) -> Path: return Path(settings.cache_folder) / model_type.value / clean_name(model_name) def get_hf_model_name(model_name: str) -> str: return f"immich-app/{clean_name(model_name)}" LOG_LEVELS: dict[str, int] = { "critical": logging.ERROR, "error": logging.ERROR, "warning": logging.WARNING, "warn": logging.WARNING, "info": logging.INFO, "log": logging.INFO, "debug": logging.DEBUG, "verbose": logging.DEBUG, } settings = Settings() log_settings = LogSettings() class CustomRichHandler(RichHandler): def __init__(self) -> None: console = Console(color_system="standard", no_color=log_settings.no_color) super().__init__( show_path=False, omit_repeated_times=False, console=console, tracebacks_suppress=[gunicorn, starlette] ) log = logging.getLogger("gunicorn.access") log.setLevel(LOG_LEVELS.get(log_settings.log_level.lower(), logging.INFO))