import json import os from io import BytesIO from pathlib import Path from random import randint from types import SimpleNamespace from typing import Any, Callable from unittest import mock import cv2 import numpy as np import onnxruntime as ort import pytest from fastapi import HTTPException from fastapi.testclient import TestClient from PIL import Image from pytest import MonkeyPatch from pytest_mock import MockerFixture from app.main import load, preload_models from app.models.clip.textual import MClipTextualEncoder, OpenClipTextualEncoder from app.models.clip.visual import OpenClipVisualEncoder from app.models.facial_recognition.detection import FaceDetector from app.models.facial_recognition.recognition import FaceRecognizer from app.sessions.ann import AnnSession from app.sessions.ort import OrtSession from .config import Settings, settings from .models.base import InferenceModel from .models.cache import ModelCache from .schemas import ModelFormat, ModelTask, ModelType class TestBase: def test_sets_default_cache_dir(self) -> None: encoder = OpenClipTextualEncoder("ViT-B-32__openai") assert encoder.cache_dir == Path(settings.cache_folder) / "clip" / "ViT-B-32__openai" def test_sets_cache_dir_kwarg(self) -> None: cache_dir = Path("/test_cache") encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=cache_dir) assert encoder.cache_dir == cache_dir def test_sets_default_model_format(self, mocker: MockerFixture) -> None: mocker.patch.object(settings, "ann", True) mocker.patch("ann.ann.is_available", False) encoder = OpenClipTextualEncoder("ViT-B-32__openai") assert encoder.model_format == ModelFormat.ONNX def test_sets_default_model_format_to_armnn_if_available(self, path: mock.Mock, mocker: MockerFixture) -> None: mocker.patch.object(settings, "ann", True) mocker.patch("ann.ann.is_available", True) path.suffix = ".armnn" encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=path) assert encoder.model_format == ModelFormat.ARMNN def test_sets_model_format_kwarg(self, mocker: MockerFixture) -> None: mocker.patch.object(settings, "ann", False) mocker.patch("ann.ann.is_available", False) encoder = OpenClipTextualEncoder("ViT-B-32__openai", model_format=ModelFormat.ARMNN) assert encoder.model_format == ModelFormat.ARMNN def test_casts_cache_dir_string_to_path(self) -> None: cache_dir = "/test_cache" encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=cache_dir) assert encoder.cache_dir == Path(cache_dir) def test_clear_cache(self, rmtree: mock.Mock, path: mock.Mock, info: mock.Mock) -> None: encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=path) encoder.clear_cache() rmtree.assert_called_once_with(encoder.cache_dir) info.assert_called_with(f"Cleared cache directory for model '{encoder.model_name}'.") def test_clear_cache_warns_if_path_does_not_exist( self, rmtree: mock.Mock, path: mock.Mock, warning: mock.Mock ) -> None: path.return_value.exists.return_value = False encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=path) encoder.clear_cache() rmtree.assert_not_called() warning.assert_called_once() def test_clear_cache_raises_exception_if_vulnerable_to_symlink_attack( self, rmtree: mock.Mock, path: mock.Mock ) -> None: rmtree.avoids_symlink_attacks = False encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=path) with pytest.raises(RuntimeError): encoder.clear_cache() rmtree.assert_not_called() def test_clear_cache_replaces_file_with_dir_if_path_is_file( self, rmtree: mock.Mock, path: mock.Mock, warning: mock.Mock ) -> None: path.return_value.is_dir.return_value = False encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=path) encoder.clear_cache() rmtree.assert_not_called() path.return_value.unlink.assert_called_once() path.return_value.mkdir.assert_called_once() warning.assert_called_once() def test_download(self, snapshot_download: mock.Mock) -> None: encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir="/path/to/cache") encoder.download() snapshot_download.assert_called_once_with( "immich-app/ViT-B-32__openai", cache_dir=encoder.cache_dir, local_dir=encoder.cache_dir, local_dir_use_symlinks=False, ignore_patterns=["*.armnn"], ) def test_download_downloads_armnn_if_preferred_format(self, snapshot_download: mock.Mock) -> None: encoder = OpenClipTextualEncoder("ViT-B-32__openai", model_format=ModelFormat.ARMNN) encoder.download() snapshot_download.assert_called_once_with( "immich-app/ViT-B-32__openai", cache_dir=encoder.cache_dir, local_dir=encoder.cache_dir, local_dir_use_symlinks=False, ignore_patterns=[], ) def test_throws_exception_if_model_path_does_not_exist( self, snapshot_download: mock.Mock, ort_session: mock.Mock, path: mock.Mock ) -> None: path.return_value.__truediv__.return_value.__truediv__.return_value.is_file.return_value = False encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir=path) with pytest.raises(FileNotFoundError): encoder.load() snapshot_download.assert_called_once() ort_session.assert_not_called() @pytest.mark.usefixtures("ort_session") class TestOrtSession: CPU_EP = ["CPUExecutionProvider"] CUDA_EP = ["CUDAExecutionProvider", "CPUExecutionProvider"] OV_EP = ["OpenVINOExecutionProvider", "CPUExecutionProvider"] CUDA_EP_OUT_OF_ORDER = ["CPUExecutionProvider", "CUDAExecutionProvider"] TRT_EP = ["TensorrtExecutionProvider", "CUDAExecutionProvider", "CPUExecutionProvider"] @pytest.mark.providers(CPU_EP) def test_sets_cpu_provider(self, providers: list[str]) -> None: session = OrtSession("ViT-B-32__openai") assert session.providers == self.CPU_EP @pytest.mark.providers(CUDA_EP) def test_sets_cuda_provider_if_available(self, providers: list[str]) -> None: session = OrtSession("ViT-B-32__openai") assert session.providers == self.CUDA_EP @pytest.mark.ov_device_ids(["GPU.0", "CPU"]) @pytest.mark.providers(OV_EP) def test_sets_openvino_provider_if_available(self, providers: list[str], ov_device_ids: list[str]) -> None: session = OrtSession("ViT-B-32__openai") assert session.providers == self.OV_EP @pytest.mark.ov_device_ids(["CPU"]) @pytest.mark.providers(OV_EP) def test_avoids_openvino_if_gpu_not_available(self, providers: list[str], ov_device_ids: list[str]) -> None: session = OrtSession("ViT-B-32__openai") assert session.providers == self.CPU_EP @pytest.mark.providers(CUDA_EP_OUT_OF_ORDER) def test_sets_providers_in_correct_order(self, providers: list[str]) -> None: session = OrtSession("ViT-B-32__openai") assert session.providers == self.CUDA_EP @pytest.mark.providers(TRT_EP) def test_ignores_unsupported_providers(self, providers: list[str]) -> None: session = OrtSession("ViT-B-32__openai") assert session.providers == self.CUDA_EP def test_sets_provider_kwarg(self) -> None: providers = ["CUDAExecutionProvider"] session = OrtSession("ViT-B-32__openai", providers=providers) assert session.providers == providers @pytest.mark.ov_device_ids(["GPU.0", "CPU"]) def test_sets_default_provider_options(self, ov_device_ids: list[str]) -> None: model_path = "/cache/ViT-B-32__openai/model.onnx" session = OrtSession(model_path, providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"]) assert session.provider_options == [ {"device_type": "GPU_FP32", "cache_dir": "/cache/ViT-B-32__openai/openvino"}, {"arena_extend_strategy": "kSameAsRequested"}, ] def test_sets_provider_options_kwarg(self) -> None: session = OrtSession( "ViT-B-32__openai", providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"], provider_options=[], ) assert session.provider_options == [] def test_sets_default_sess_options(self) -> None: session = OrtSession("ViT-B-32__openai") assert session.sess_options.execution_mode == ort.ExecutionMode.ORT_SEQUENTIAL assert session.sess_options.inter_op_num_threads == 1 assert session.sess_options.intra_op_num_threads == 2 assert session.sess_options.enable_cpu_mem_arena is False def test_sets_default_sess_options_does_not_set_threads_if_non_cpu_and_default_threads(self) -> None: session = OrtSession("ViT-B-32__openai", providers=["CUDAExecutionProvider", "CPUExecutionProvider"]) assert session.sess_options.inter_op_num_threads == 0 assert session.sess_options.intra_op_num_threads == 0 def test_sets_default_sess_options_sets_threads_if_non_cpu_and_set_threads(self, mocker: MockerFixture) -> None: mock_settings = mocker.patch("app.sessions.ort.settings", autospec=True) mock_settings.model_inter_op_threads = 2 mock_settings.model_intra_op_threads = 4 session = OrtSession("ViT-B-32__openai", providers=["CUDAExecutionProvider", "CPUExecutionProvider"]) assert session.sess_options.inter_op_num_threads == 2 assert session.sess_options.intra_op_num_threads == 4 def test_sets_sess_options_kwarg(self) -> None: sess_options = ort.SessionOptions() session = OrtSession( "ViT-B-32__openai", providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"], provider_options=[], sess_options=sess_options, ) assert sess_options is session.sess_options class TestAnnSession: def test_creates_ann_session(self, ann_session: mock.Mock, info: mock.Mock) -> None: model_path = mock.MagicMock(spec=Path) cache_dir = mock.MagicMock(spec=Path) AnnSession(model_path, cache_dir) ann_session.assert_called_once_with(tuning_level=3, tuning_file=(cache_dir / "gpu-tuning.ann").as_posix()) ann_session.return_value.load.assert_called_once_with( model_path.as_posix(), cached_network_path=model_path.with_suffix(".anncache").as_posix() ) info.assert_has_calls( [ mock.call("Loading ANN model %s ...", model_path), mock.call("Loaded ANN model with ID %d", ann_session.return_value.load.return_value), ] ) def test_get_inputs(self, ann_session: mock.Mock) -> None: ann_session.return_value.load.return_value = 123 ann_session.return_value.input_shapes = {123: [(1, 3, 224, 224)]} session = AnnSession(Path("ViT-B-32__openai")) inputs = session.get_inputs() assert len(inputs) == 1 assert inputs[0].name is None assert inputs[0].shape == (1, 3, 224, 224) def test_get_outputs(self, ann_session: mock.Mock) -> None: ann_session.return_value.load.return_value = 123 ann_session.return_value.output_shapes = {123: [(1, 3, 224, 224)]} session = AnnSession(Path("ViT-B-32__openai")) outputs = session.get_outputs() assert len(outputs) == 1 assert outputs[0].name is None assert outputs[0].shape == (1, 3, 224, 224) def test_run(self, ann_session: mock.Mock, mocker: MockerFixture) -> None: ann_session.return_value.load.return_value = 123 np_spy = mocker.spy(np, "ascontiguousarray") session = AnnSession(Path("ViT-B-32__openai")) [input1, input2] = [np.random.rand(1, 3, 224, 224).astype(np.float32) for _ in range(2)] input_feed = {"input.1": input1, "input.2": input2} session.run(None, input_feed) ann_session.return_value.execute.assert_called_once_with(123, [input1, input2]) np_spy.call_count == 2 np_spy.assert_has_calls([mock.call(input1), mock.call(input2)]) class TestCLIP: embedding = np.random.rand(512).astype(np.float32) cache_dir = Path("test_cache") def test_basic_image( self, pil_image: Image.Image, mocker: MockerFixture, clip_model_cfg: dict[str, Any], clip_preprocess_cfg: Callable[[Path], dict[str, Any]], ) -> None: mocker.patch.object(OpenClipVisualEncoder, "download") mocker.patch.object(OpenClipVisualEncoder, "model_cfg", clip_model_cfg) mocker.patch.object(OpenClipVisualEncoder, "preprocess_cfg", clip_preprocess_cfg) mocked = mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value mocked.run.return_value = [[self.embedding]] clip_encoder = OpenClipVisualEncoder("ViT-B-32__openai", cache_dir="test_cache") embedding = clip_encoder.predict(pil_image) assert isinstance(embedding, np.ndarray) assert embedding.shape[0] == clip_model_cfg["embed_dim"] assert embedding.dtype == np.float32 mocked.run.assert_called_once() def test_basic_text( self, mocker: MockerFixture, clip_model_cfg: dict[str, Any], clip_tokenizer_cfg: Callable[[Path], dict[str, Any]], ) -> None: mocker.patch.object(OpenClipTextualEncoder, "download") mocker.patch.object(OpenClipTextualEncoder, "model_cfg", clip_model_cfg) mocker.patch.object(OpenClipTextualEncoder, "tokenizer_cfg", clip_tokenizer_cfg) mocked = mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value mocked.run.return_value = [[self.embedding]] mocker.patch("app.models.clip.textual.Tokenizer.from_file", autospec=True) clip_encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir="test_cache") embedding = clip_encoder.predict("test search query") assert isinstance(embedding, np.ndarray) assert embedding.shape[0] == clip_model_cfg["embed_dim"] assert embedding.dtype == np.float32 mocked.run.assert_called_once() def test_openclip_tokenizer( self, mocker: MockerFixture, clip_model_cfg: dict[str, Any], clip_tokenizer_cfg: Callable[[Path], dict[str, Any]], ) -> None: mocker.patch.object(OpenClipTextualEncoder, "download") mocker.patch.object(OpenClipTextualEncoder, "model_cfg", clip_model_cfg) mocker.patch.object(OpenClipTextualEncoder, "tokenizer_cfg", clip_tokenizer_cfg) mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value mock_tokenizer = mocker.patch("app.models.clip.textual.Tokenizer.from_file", autospec=True).return_value mock_ids = [randint(0, 50000) for _ in range(77)] mock_tokenizer.encode.return_value = SimpleNamespace(ids=mock_ids) clip_encoder = OpenClipTextualEncoder("ViT-B-32__openai", cache_dir="test_cache") clip_encoder._load() tokens = clip_encoder.tokenize("test search query") assert "text" in tokens assert isinstance(tokens["text"], np.ndarray) assert tokens["text"].shape == (1, 77) assert tokens["text"].dtype == np.int32 assert np.allclose(tokens["text"], np.array([mock_ids], dtype=np.int32), atol=0) def test_mclip_tokenizer( self, mocker: MockerFixture, clip_model_cfg: dict[str, Any], clip_tokenizer_cfg: Callable[[Path], dict[str, Any]], ) -> None: mocker.patch.object(MClipTextualEncoder, "download") mocker.patch.object(MClipTextualEncoder, "model_cfg", clip_model_cfg) mocker.patch.object(MClipTextualEncoder, "tokenizer_cfg", clip_tokenizer_cfg) mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value mock_tokenizer = mocker.patch("app.models.clip.textual.Tokenizer.from_file", autospec=True).return_value mock_ids = [randint(0, 50000) for _ in range(77)] mock_attention_mask = [randint(0, 1) for _ in range(77)] mock_tokenizer.encode.return_value = SimpleNamespace(ids=mock_ids, attention_mask=mock_attention_mask) clip_encoder = MClipTextualEncoder("ViT-B-32__openai", cache_dir="test_cache") clip_encoder._load() tokens = clip_encoder.tokenize("test search query") assert "input_ids" in tokens assert "attention_mask" in tokens assert isinstance(tokens["input_ids"], np.ndarray) assert isinstance(tokens["attention_mask"], np.ndarray) assert tokens["input_ids"].shape == (1, 77) assert tokens["attention_mask"].shape == (1, 77) assert np.allclose(tokens["input_ids"], np.array([mock_ids], dtype=np.int32), atol=0) assert np.allclose(tokens["attention_mask"], np.array([mock_attention_mask], dtype=np.int32), atol=0) class TestFaceRecognition: def test_set_min_score(self, mocker: MockerFixture) -> None: mocker.patch.object(FaceRecognizer, "load") face_recognizer = FaceRecognizer("buffalo_s", cache_dir="test_cache", min_score=0.5) assert face_recognizer.min_score == 0.5 def test_detection(self, cv_image: cv2.Mat, mocker: MockerFixture) -> None: mocker.patch.object(FaceDetector, "load") face_detector = FaceDetector("buffalo_s", min_score=0.0, cache_dir="test_cache") det_model = mock.Mock() num_faces = 2 bbox = np.random.rand(num_faces, 4).astype(np.float32) scores = np.array([[0.67]] * num_faces).astype(np.float32) kpss = np.random.rand(num_faces, 5, 2).astype(np.float32) det_model.detect.return_value = (np.concatenate([bbox, scores], axis=-1), kpss) face_detector.model = det_model faces = face_detector.predict(cv_image) assert isinstance(faces, dict) assert isinstance(faces.get("boxes", None), np.ndarray) assert isinstance(faces.get("landmarks", None), np.ndarray) assert isinstance(faces.get("scores", None), np.ndarray) assert np.equal(faces["boxes"], bbox.round()).all() assert np.equal(faces["landmarks"], kpss).all() assert np.equal(faces["scores"], scores).all() det_model.detect.assert_called_once() def test_recognition(self, cv_image: cv2.Mat, mocker: MockerFixture) -> None: mocker.patch.object(FaceRecognizer, "load") face_recognizer = FaceRecognizer("buffalo_s", min_score=0.0, cache_dir="test_cache") num_faces = 2 bbox = np.random.rand(num_faces, 4).astype(np.float32) scores = np.array([0.67] * num_faces).astype(np.float32) kpss = np.random.rand(num_faces, 5, 2).astype(np.float32) faces = {"boxes": bbox, "landmarks": kpss, "scores": scores} rec_model = mock.Mock() embedding = np.random.rand(num_faces, 512).astype(np.float32) rec_model.get_feat.return_value = embedding face_recognizer.model = rec_model faces = face_recognizer.predict(cv_image, faces) assert isinstance(faces, list) assert len(faces) == num_faces for face in faces: assert isinstance(face.get("boundingBox"), dict) assert set(face["boundingBox"]) == {"x1", "y1", "x2", "y2"} assert all(isinstance(val, np.float32) for val in face["boundingBox"].values()) assert isinstance(face.get("embedding"), np.ndarray) assert face["embedding"].shape[0] == 512 assert isinstance(face.get("score", None), np.float32) rec_model.get_feat.assert_called_once() call_args = rec_model.get_feat.call_args_list[0].args assert len(call_args) == 1 assert isinstance(call_args[0], list) assert isinstance(call_args[0][0], np.ndarray) assert call_args[0][0].shape == (112, 112, 3) def test_recognition_adds_batch_axis_for_ort( self, ort_session: mock.Mock, path: mock.Mock, mocker: MockerFixture ) -> None: onnx = mocker.patch("app.models.facial_recognition.recognition.onnx", autospec=True) update_dims = mocker.patch( "app.models.facial_recognition.recognition.update_inputs_outputs_dims", autospec=True ) mocker.patch("app.models.base.InferenceModel.download") mocker.patch("app.models.facial_recognition.recognition.ArcFaceONNX") ort_session.return_value.get_inputs.return_value = [SimpleNamespace(name="input.1", shape=(1, 3, 224, 224))] ort_session.return_value.get_outputs.return_value = [SimpleNamespace(name="output.1", shape=(1, 800))] path.return_value.__truediv__.return_value.__truediv__.return_value.suffix = ".onnx" proto = mock.Mock() input_dims = mock.Mock() input_dims.name = "input.1" input_dims.type.tensor_type.shape.dim = [SimpleNamespace(dim_value=size) for size in [1, 3, 224, 224]] proto.graph.input = [input_dims] output_dims = mock.Mock() output_dims.name = "output.1" output_dims.type.tensor_type.shape.dim = [SimpleNamespace(dim_value=size) for size in [1, 800]] proto.graph.output = [output_dims] onnx.load.return_value = proto face_recognizer = FaceRecognizer("buffalo_s", cache_dir=path) face_recognizer.load() assert face_recognizer.batch is True update_dims.assert_called_once_with(proto, {"input.1": ["batch", 3, 224, 224]}, {"output.1": ["batch", 800]}) onnx.save.assert_called_once_with(update_dims.return_value, face_recognizer.model_path) def test_recognition_does_not_add_batch_axis_if_exists( self, ort_session: mock.Mock, path: mock.Mock, mocker: MockerFixture ) -> None: onnx = mocker.patch("app.models.facial_recognition.recognition.onnx", autospec=True) update_dims = mocker.patch( "app.models.facial_recognition.recognition.update_inputs_outputs_dims", autospec=True ) mocker.patch("app.models.base.InferenceModel.download") mocker.patch("app.models.facial_recognition.recognition.ArcFaceONNX") path.return_value.__truediv__.return_value.__truediv__.return_value.suffix = ".onnx" inputs = [SimpleNamespace(name="input.1", shape=("batch", 3, 224, 224))] outputs = [SimpleNamespace(name="output.1", shape=("batch", 800))] ort_session.return_value.get_inputs.return_value = inputs ort_session.return_value.get_outputs.return_value = outputs face_recognizer = FaceRecognizer("buffalo_s", cache_dir=path) face_recognizer.load() assert face_recognizer.batch is True update_dims.assert_not_called() onnx.load.assert_not_called() onnx.save.assert_not_called() def test_recognition_does_not_add_batch_axis_for_armnn( self, ann_session: mock.Mock, path: mock.Mock, mocker: MockerFixture ) -> None: onnx = mocker.patch("app.models.facial_recognition.recognition.onnx", autospec=True) update_dims = mocker.patch( "app.models.facial_recognition.recognition.update_inputs_outputs_dims", autospec=True ) mocker.patch("app.models.base.InferenceModel.download") mocker.patch("app.models.facial_recognition.recognition.ArcFaceONNX") path.return_value.__truediv__.return_value.__truediv__.return_value.suffix = ".armnn" inputs = [SimpleNamespace(name="input.1", shape=("batch", 3, 224, 224))] outputs = [SimpleNamespace(name="output.1", shape=("batch", 800))] ann_session.return_value.get_inputs.return_value = inputs ann_session.return_value.get_outputs.return_value = outputs face_recognizer = FaceRecognizer("buffalo_s", model_format=ModelFormat.ARMNN, cache_dir=path) face_recognizer.load() assert face_recognizer.batch is False update_dims.assert_not_called() onnx.load.assert_not_called() onnx.save.assert_not_called() @pytest.mark.asyncio class TestCache: async def test_caches(self, mock_get_model: mock.Mock) -> None: model_cache = ModelCache() await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION) await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION) assert len(model_cache.cache._cache) == 1 mock_get_model.assert_called_once() async def test_kwargs_used(self, mock_get_model: mock.Mock) -> None: model_cache = ModelCache() await model_cache.get( "test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, cache_dir="test_cache" ) mock_get_model.assert_called_once_with( "test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, cache_dir="test_cache" ) async def test_different_clip(self, mock_get_model: mock.Mock) -> None: model_cache = ModelCache() await model_cache.get("test_model_name", ModelType.VISUAL, ModelTask.SEARCH) await model_cache.get("test_model_name", ModelType.TEXTUAL, ModelTask.SEARCH) mock_get_model.assert_has_calls( [ mock.call("test_model_name", ModelType.VISUAL, ModelTask.SEARCH), mock.call("test_model_name", ModelType.TEXTUAL, ModelTask.SEARCH), ] ) assert len(model_cache.cache._cache) == 2 @mock.patch("app.models.cache.OptimisticLock", autospec=True) async def test_model_ttl(self, mock_lock_cls: mock.Mock, mock_get_model: mock.Mock) -> None: model_cache = ModelCache() await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, ttl=100) mock_lock_cls.return_value.__aenter__.return_value.cas.assert_called_with(mock.ANY, ttl=100) @mock.patch("app.models.cache.SimpleMemoryCache.expire") async def test_revalidate_get(self, mock_cache_expire: mock.Mock, mock_get_model: mock.Mock) -> None: model_cache = ModelCache(revalidate=True) await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, ttl=100) await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, ttl=100) mock_cache_expire.assert_called_once_with(mock.ANY, 100) async def test_profiling(self, mock_get_model: mock.Mock) -> None: model_cache = ModelCache(profiling=True) await model_cache.get("test_model_name", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION, ttl=100) profiling = await model_cache.get_profiling() assert isinstance(profiling, dict) assert profiling == model_cache.cache.profiling async def test_loads_mclip(self) -> None: model_cache = ModelCache() model = await model_cache.get("XLM-Roberta-Large-Vit-B-32", ModelType.TEXTUAL, ModelTask.SEARCH) assert isinstance(model, MClipTextualEncoder) assert model.model_name == "XLM-Roberta-Large-Vit-B-32" async def test_raises_exception_if_invalid_model_type(self) -> None: invalid: Any = SimpleNamespace(value="invalid") model_cache = ModelCache() with pytest.raises(ValueError): await model_cache.get("XLM-Roberta-Large-Vit-B-32", ModelType.TEXTUAL, invalid) async def test_raises_exception_if_unknown_model_name(self) -> None: model_cache = ModelCache() with pytest.raises(ValueError): await model_cache.get("test_model_name", ModelType.TEXTUAL, ModelTask.SEARCH) async def test_preloads_clip_models(self, monkeypatch: MonkeyPatch, mock_get_model: mock.Mock) -> None: os.environ["MACHINE_LEARNING_PRELOAD__CLIP"] = "ViT-B-32__openai" settings = Settings() assert settings.preload is not None assert settings.preload.clip == "ViT-B-32__openai" model_cache = ModelCache() monkeypatch.setattr("app.main.model_cache", model_cache) await preload_models(settings.preload) mock_get_model.assert_has_calls( [ mock.call("ViT-B-32__openai", ModelType.TEXTUAL, ModelTask.SEARCH), mock.call("ViT-B-32__openai", ModelType.VISUAL, ModelTask.SEARCH), ], any_order=True, ) async def test_preloads_facial_recognition_models( self, monkeypatch: MonkeyPatch, mock_get_model: mock.Mock ) -> None: os.environ["MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION"] = "buffalo_s" settings = Settings() assert settings.preload is not None assert settings.preload.facial_recognition == "buffalo_s" model_cache = ModelCache() monkeypatch.setattr("app.main.model_cache", model_cache) await preload_models(settings.preload) mock_get_model.assert_has_calls( [ mock.call("buffalo_s", ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION), mock.call("buffalo_s", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION), ], any_order=True, ) async def test_preloads_all_models(self, monkeypatch: MonkeyPatch, mock_get_model: mock.Mock) -> None: os.environ["MACHINE_LEARNING_PRELOAD__CLIP"] = "ViT-B-32__openai" os.environ["MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION"] = "buffalo_s" settings = Settings() assert settings.preload is not None assert settings.preload.clip == "ViT-B-32__openai" assert settings.preload.facial_recognition == "buffalo_s" model_cache = ModelCache() monkeypatch.setattr("app.main.model_cache", model_cache) await preload_models(settings.preload) mock_get_model.assert_has_calls( [ mock.call("ViT-B-32__openai", ModelType.TEXTUAL, ModelTask.SEARCH), mock.call("ViT-B-32__openai", ModelType.VISUAL, ModelTask.SEARCH), mock.call("buffalo_s", ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION), mock.call("buffalo_s", ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION), ], any_order=True, ) @pytest.mark.asyncio class TestLoad: async def test_load(self) -> None: mock_model = mock.Mock(spec=InferenceModel) mock_model.loaded = False mock_model.load_attempts = 0 res = await load(mock_model) assert res is mock_model mock_model.load.assert_called_once() mock_model.clear_cache.assert_not_called() async def test_load_returns_model_if_loaded(self) -> None: mock_model = mock.Mock(spec=InferenceModel) mock_model.loaded = True res = await load(mock_model) assert res is mock_model mock_model.load.assert_not_called() async def test_load_clears_cache_and_retries_if_os_error(self) -> None: mock_model = mock.Mock(spec=InferenceModel) mock_model.model_name = "test_model_name" mock_model.model_type = ModelType.VISUAL mock_model.model_task = ModelTask.SEARCH mock_model.load.side_effect = [OSError, None] mock_model.loaded = False mock_model.load_attempts = 0 res = await load(mock_model) assert res is mock_model mock_model.clear_cache.assert_called_once() assert mock_model.load.call_count == 2 async def test_load_raises_if_os_error_and_already_retried(self) -> None: mock_model = mock.Mock(spec=InferenceModel) mock_model.model_name = "test_model_name" mock_model.model_type = ModelType.VISUAL mock_model.model_task = ModelTask.SEARCH mock_model.loaded = False mock_model.load_attempts = 2 with pytest.raises(HTTPException): await load(mock_model) mock_model.clear_cache.assert_not_called() mock_model.load.assert_not_called() async def test_falls_back_to_onnx_if_other_format_does_not_exist( self, exception: mock.Mock, warning: mock.Mock ) -> None: mock_model = mock.Mock(spec=InferenceModel) mock_model.model_name = "test_model_name" mock_model.model_type = ModelType.VISUAL mock_model.model_task = ModelTask.SEARCH mock_model.model_format = ModelFormat.ARMNN mock_model.loaded = False mock_model.load_attempts = 0 error = FileNotFoundError() mock_model.load.side_effect = [error, None] await load(mock_model) mock_model.clear_cache.assert_not_called() assert mock_model.load.call_count == 2 exception.assert_called_once_with(error) warning.assert_called_once_with("ARMNN is available, but model 'test_model_name' does not support it.") mock_model.model_format = ModelFormat.ONNX @pytest.mark.skipif( not settings.test_full, reason="More time-consuming since it deploys the app and loads models.", ) class TestEndpoints: def test_clip_image_endpoint( self, pil_image: Image.Image, responses: dict[str, Any], deployed_app: TestClient ) -> None: byte_image = BytesIO() pil_image.save(byte_image, format="jpeg") expected = responses["clip"]["image"] response = deployed_app.post( "http://localhost:3003/predict", data={"entries": json.dumps({"clip": {"visual": {"modelName": "ViT-B-32__openai"}}})}, files={"image": byte_image.getvalue()}, ) actual = response.json() assert response.status_code == 200 assert isinstance(actual, dict) assert isinstance(actual.get("clip", None), list) assert np.allclose(expected, actual["clip"]) def test_clip_text_endpoint(self, responses: dict[str, Any], deployed_app: TestClient) -> None: expected = responses["clip"]["text"] response = deployed_app.post( "http://localhost:3003/predict", data={ "entries": json.dumps( { "clip": {"textual": {"modelName": "ViT-B-32__openai"}}, }, ), "text": "test search query", }, ) actual = response.json() assert response.status_code == 200 assert isinstance(actual, dict) assert isinstance(actual.get("clip", None), list) assert np.allclose(expected, actual["clip"]) def test_face_endpoint(self, pil_image: Image.Image, responses: dict[str, Any], deployed_app: TestClient) -> None: byte_image = BytesIO() pil_image.save(byte_image, format="jpeg") response = deployed_app.post( "http://localhost:3003/predict", data={ "entries": json.dumps( { "facial-recognition": { "detection": {"modelName": "buffalo_l", "options": {"minScore": 0.034}}, "recognition": {"modelName": "buffalo_l"}, } } ) }, files={"image": byte_image.getvalue()}, ) actual = response.json() assert response.status_code == 200 assert isinstance(actual, dict) assert actual.get("imageHeight", None) == responses["imageHeight"] assert actual.get("imageWidth", None) == responses["imageWidth"] assert "facial-recognition" in actual and isinstance(actual["facial-recognition"], list) assert len(actual["facial-recognition"]) == len(responses["facial-recognition"]) for expected_face, actual_face in zip(responses["facial-recognition"], actual["facial-recognition"]): assert expected_face["boundingBox"] == actual_face["boundingBox"] assert np.allclose(expected_face["embedding"], actual_face["embedding"]) assert np.allclose(expected_face["score"], actual_face["score"])